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The presented thesis is intended as an introduction to the physics of the earthquake

source focused on selected basic topics. We start with a presentation of a relatively

simple concept of a spontaneous rupture propagation on a fault surface as a basic

model of a source of a tectonic earthquake. Basic concepts - slip, slip rate, total trac-

tion, traction variation, and frictional strength on the faulting surface are defined.

The most general form of the constitutive law - the friction law - is given and briefly

characterized. We continue with presentation of the stress-strain relation, equation of

motion, local form of the energy conservation law, and strain energy function assuming

standard natural state in the continuum mechanics - the state characterized by a zero

stress and strain. Then we present generalization of these relations and concepts for

the case of the natural state characterized by a nonzero initial stress but zero strain.

Such a natural state is convenient to consider as a state just prior an earthquake. We

continue with a concise summary of the four basic models of the seismoactive fault

and earthquake rupture (fracture) - Griffith’s, Irwin-Orowan’s, breakdown-zone and

finite-thickness model. A linear slip-weakening friction law is briefly presented in re-

lation to the breakdown-zone model as the simplest possible constitutive law for the

faulting surface. A brief characterization of the finite-thickness model is accompanied

by a short dictionary of basic geologic terms given in the appendix. Two chapters are

devoted to the energetic considerations. The first law of thermodynamics is applied to

a volume of the elastic continuum in three distinct cases - to a smooth volume without



fault (fracture) surface, volume intersecting fracture surface, and volume intersecting

fracture surface and containing a fracture edge. The first case leads to the local form

of the energy conservation, the second to the energy budget at a point of the fracture

surface, the third to the energy budget at a point of the fracture edge. Seismic energy

is then defined and all relations given in a concise form in the book by Kostrov and

Das (1988) are derived in great detail. A wrong sign in one important relation (4.4.21)

in the book is found as well as inconsistent choice of the normal to the surface of the

auxiliary volume surrounding the fracture edge (compared to that in the application of

the first law of thermodynamics). Because in our future work we will focus on physics

of the finite-thickness fault model, the last chapter is a very brief presentation of the

most important potential mechanisms of the dynamic fault weakening - strongly related

just to the finite-thickness fault model - flash heating and weakening of micro-asperity

contacts, thermal pressurization, formation of silica gel, and frictional melting.

Keywords: Earthquake source dynamics, Earthquake energy budget, Seismic energy,

Thermodynamics of earthquakes.



Foreword

The presented thesis can be considered as an introductory text on the physics of

the earthquake source. The thesis is focused on basic models of the seismoactive fault

and earthquake rupture, thermodynamics (energy balance) of the earthquake rupture,

seismic energy, and the most important potential mechanisms of the dynamic fault

weakening.

The thesis was written within framework of the research conducted by a team of

numerical modeling of seismic wave propagation and earthquake motion in the Division

of the Physics of the Earth in the Department of Astronomy, Physics of the Earth, and

Meteorology under supervision of Professor Peter Moczo.

The topics of the thesis were selected by the supervisor in view of the ongoing and

planned research effort of his team.

The author, based on the study of the fundamental books on the physics of the

earthquake source as well as selected recent journal papers, explained and summarized

basic concepts of the earthquake source dynamics. The author derived in great detail

energy balance relations for three basic distinct cases - for a smooth volume without

fault (fracture) surface, volume intersecting fracture surface, and volume intersecting

fracture surface and containing a fracture edge. The first case leads to the local form

of the energy conservation, the second to the energy budget at a point of the fracture

surface, the third to the energy budget at a point of the fracture edge. The author also

derived in great detail all relations given in a concise form in the book by Kostrov and

Das (1988). The author found a wrong sign in one important relation (4.4.21) in the

book as well as inconsistent choice of the normal to the surface of the auxiliary volume

surrounding the fracture edge (compared to that in the application of the first law of

thermodynamics).

The thesis can serve as a useful detail introductory-and-explanatory text for those

who are not familiar with the earthquake source dynamics as well as those who want

to focus on the source-dynamics related research. The latter is due to the fact that

the derived relations are still a subject of recent active research in relation to recent

generalizations of the earthquake source model.



Professor Peter Moczo closely supervised the preparation of the thesis during the

whole period. Dr. Jozef Kristek and Mgr. Peter Pazak helped with technical preparation

of the thesis. Mgr. Peter Pazak also critically read the manuscript. Dr. Massimo Cocco

kindly provided his two recent (so far unpublished) manuscripts and commented several

aspects of the fault models.
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1 Introduction

Simple model of an earthquake source. Here we closely follow Moczo et al. (2007).

An earthquake fault in many problems may be considered as a surface separating two

blocks of heterogeneous elastic or viscoelastic medium. A non-zero initial equilibrium

stress on the fault surface is assumed as stress caused by tectonic loading plus residual

stress after previous earthquakes on the fault. An earthquake itself may be modeled as

spontaneous rupture (fracture) propagation along the fault. The propagating rupture

radiates seismic waves. The seismic waves propagate from the fault into the Earth’s

interior. Inside the rupture displacement and particle-velocity vectors are discontinuous

across the fault. At the same time traction vector is continuous across the fault surface.

Let ~n (xi) be a unit normal vector to the fault surface pointing from the ‘− ’ to ‘+’

side of the surface. Then slip (discontinuity in the displacement vector across the fault

surface) can be defined as

∆~u (xi, t) = ~u +(x+
i , t) − ~u −(x−i , t) . (1.1)

The time derivative of slip, slip rate (discontinuity in the particle-velocity vector across

the fault surface) is defined by

∆~v (xi, t) = ~v +(x+
i , t) − ~v −(x−i , t) . (1.2)

Vector of the total traction on the fault is

~T (~n; xi, t) = ~T 0(~n; xi) + ∆~T (~n; xi, t) , (1.3)

where ~T 0 (~n; xi) is the initial traction and ∆~T (~n; xi, t) traction variation (or pertur-

bation). The traction variation is caused by the propagating rupture. At any point of

the rupture the total traction is related to slip through the friction law

~T = ~T f (∆~u, ∆~v, θ) (1.4)

where ~T f is frictional traction and θ represents a set of state variables. Equation

(1.4), a fault constitutive law, means that the total dynamic traction on the fault is

determined by the friction. Given the initial traction and material parameters of the

fault, it is the friction law which controls initialization, propagation and healing (arrest)

of the rupture.
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Consider further only shear faulting. This means that there is no opening of the

fault and no interpenetrating of the fault materials. Define frictional strength or fault

friction as

S = µf | ~Tn| , (1.5)

where µf and ~Tn are coefficient of friction and fault-normal component of traction on

the fault, respectively. First, assume a locked fault. If, at a point of the fault surface,

the magnitude of the shear traction (that is, traction tangential to the fault surface) is

smaller than the frictional strength the fault remains locked and slip rate zero at the

point. Should the shear traction exceed the frictional strength, slip occurs. The shear

traction then varies following the friction law and eventually falls down to the final

value. If the final value is equal to the kinematic (dynamic) frictional level, the model

is called Orowan’s model. If the final value is larger than the kinematic level, the model

is called the undershoot model. If the final value is smaller than the kinematic level,

the model is called the overshoot model. The slipping, that is, the relative motion of

the fault’s faces, is opposed by the friction.

Let subscripts sh and n denote the shear and normal components with respect to

the fault surface. The boundary conditions on the fault can be formulated as follows.

Shear faulting:

∆~un = 0, ∆~vn = 0, ∆~ush 6= 0, ∆~vsh 6= 0 . (1.6)

Shear traction bounded by the frictional strength:

| ~Tsh | ≤ S . (1.7)

Colinearity of the shear traction and slip rate:

S ∆~vsh − ~Tsh (~n) |∆~vsh| = 0 . (1.8)

The fact that the frictional traction opposes the slipping is consistent with the colin-

earity requirement because we consider vector ~n oriented in the direction from the

‘− ’ to ‘+’ side of the fault and slip as the relative motion of the ‘+’ side with respect

to the ‘− ’ side of the fault: both ~T (~n) and ∆~v are viewed from the same side of

the fault. If slip was defined as the relative motion of the ‘− ’ side with respect to the

‘+’ side of the fault, requirement of the antiparallelism with the ‘+’ sign in eq. (1.8)
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would be consistent with the frictional traction opposing the relative motion of the

fault faces.

When a rupture front reaches a point of the fault and slip starts at that point, the

total dynamic traction varies following the friction law. Before the traction at the point

reaches the final level, points of the fault in front of the considered point start slipping.

Thus, the process of the traction degradation occurs within a finite zone behind the

so-called crack tip. This zone is termed cohesive zone or breakdown zone. The friction

law determines processes and phenomena in the cohesive zone.

Following Bizzarri and Cocco (2005), the general expression for the coefficient of

friction is,

µf = µf ( l, |∆~v| , Ψ1, ..., ΨN , T, H, λc, hm, g, Ce ) , (1.9)

where l is the slip path length

l =

∫ t

t0

|∆~v|(t′) dt′ , (1.10)

|∆~v| is modulus of the slip rate, Ψ1, ..., ΨN state variables, T temperature accounting

for ductility, plastic flow, rock melting and vaporization, H humidity, λc character-

istic length of the fault surface accounting for roughness and topography of asperity

contacts and possibly responsible for mechanical lubrication, hm material hardness, g

gouge parameter accounting for surface consumption and gouge formation during slid-

ing episodes, Ce chemical environment parameter. In general, fault-normal traction

in eq. (1.5) should stand for a time-dependent effective normal traction accounting for

a pore fluid pressure (which reduces the normal traction).

Due to its generality, equation (1.9) is a very complicated constitutive relation. It

is not trivial to fully account for such a constitutive law. In fact, recent numerical

modeling of the earthquake source dynamics considerably simplifies the relation due

to its methodological complexity, problems to determine values of the parameters, and

computer time and memory requirements. For a detailed discussion see, e.g., Cocco

and Bizzarri (2002) and Bizzarri and Cocco (2003).

Concept of fracture and model of fracture. Kostrov and Das (1988) define the

model of fracture (on p. 54): The set of assumptions related to the transition of particles
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of the medium from the continuous state to the broken state has been called the ’model

of fracture’.

The fracture of the continuous medium must be understood as fracture of ’so large

volume’ of material which can be described as continuous (at a given scale of macro-

scopic description, that is, at a given level of ’macroscopicity’). In other words, the

fracture is the formation of discontinuity the size of which exceeds the size of particles

chosen as elementary particles of continuum. Formation of cracks of smaller size should

not be considered as fracturing of the medium at a given level of macroscopic descrip-

tion. At the same time, formation and propagation of macroscopic fracture occurs by

nucleation and coalescence (linking) of the cracks of smaller size (that is, microcracks

at a given level of macroscopic scale).

In the simplest model, in an ideally brittle medium, particles (of continuum) pass

from the continuous to the fractured state along a curve called the crack edge (crack

tip). In a more realistic model, model of non-ideally brittle medium, an intermediate

state is assumed: some interaction between the crack faces near the edge exists. This in-

teraction depends on the displacement discontinuity and cannot be reduced to friction.

Models suggested by Barenblatt (1959), Leonov and Panasyuk (1959) and Dugdale

(1960) together with the cohesive-zone models by Ida (1972) and Palmer and Rice

(1973) are examples.

Focus of this thesis. In this thesis we focus on the basic models of the seismoactive

fault and earthquake rupture, thermodynamic considerations, and seismic energy. We

will derive in detail all relations of the earthquake energy balance that were presented

in a concise form by Kostrov and Das (1988). Because in our future we plan to focus

on physics of the finite-thickness fault model, we will also include a brief presentation

of the possible dynamic-weakening mechanisms.

Note. In addition to the books and journal articles directly referred to in the text of

the thesis, the following important monographs provide extensive material relevant to

the topic: Broberg (1999), Freund (1998), and Lawn (1993).
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2 The Stress-strain Relation and Strain-energy

Function

2.1 Natural State with Zero Stress and Strain

Here we follow Kostrov and Das (1988) and Aki and Richards (2002). We derive relation

for the final elastic energy density (the first relation on page 151 of Kostrov and Das

(1988)).

The natural (i.e. initial or reference) state in the elastic body is usually defined as a

state with zero stress and zero strain. Strain is then a relative measure of deformation

- change in shape of the particles constituting the elastic body due to acting stress.

Assuming small deformations, the constitutive relation for a linear elastic body is given

by Hooke’s law

σij = cijkl εkl , (2.1)

where σij is the stress tensor, cijkl tensor of elastic coefficients, and εkl (infinitesimal)

strain tensor. Both σij and εkl are measured from the natural state.

The equation of motion is

ρ üi = σij,j + fi , (2.2)

where ρ is density, ui displacement vector, and fi body force vector per unit volume.

The application of the 1st law of thermodynamics yields the local form of the energy

conservation law

U̇ = σij ε̇ij − qi,i , (2.3)

where U is volume density of internal (intrinsic) energy and qi heat flux vector. (Re-

lation (2.3) will be derived in detail in Chapter 4.)

The strain energy function W is defined by

σij =
∂W
∂εij

. (2.4)
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If the strain-energy function exists for a deformation, and W = 0 in the natural state

(σij = 0, εij = 0), eq. (2.4) combined with Hooke’s law yields

W =
1

2
σij εij . (2.5)

(Note that if we formally assumed W = W0 in the natural state, we would get W =

W0 + 1
2

σij εij . The other relations remain unchanged.)

Using Hooke’s law, formal re-indexing (i ↔ k, j ↔ l), and symmetry cijkl = cklij

we obtain

Ẇ = σij ε̇ij . (2.6)

Substitution of eq. (2.6) into eq. (2.3) gives

U̇ = Ẇ − qi,i . (2.7)

If the deformation is adiabatic, that is, if qi = 0, we can choose

W = U . (2.8)

2.2 Natural State with Non-zero Stress (Prestress) and Zero

Strain

The concept of the natural state described in the previous section is not applicable in

the theory of the earthquake source because the Earth’s interior is under considerable

stress - at least hydrostatic. In general, the state just before an earthquake is charac-

terized by initial stress σ0
ij and initial strain ε0

ij . The initial strain is not small and the

stress - strain relation is nonlinear.

In order to avoid a nonlinear treatment, the state just before the earthquake is

defined as the initial state with non-zero initial stress σ0
ij (also called prestress) but

zero initial strain.

The total stress during the earthquake, σij , is then

σij = σ0
ij + τij , (2.9)

where τij is the stress variation (perturbation) due to the earthquake. Assuming the

linear theory of elasticity with initial shear stress components small compared to the

elastic moduli, and ui and εij measured from the initial state before the earthquake,
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τij = cijkl εkl (2.10)

and

σij = σ0
ij + cijkl εkl . (2.11)

The density of the strain energy is then

W = σ0
ij εij +

1

2
τij εij . (2.12)

Or, considering relation (2.9),

W =
1

2

(
σ0

ij + σij

)
εij . (2.13)

It is easy to check, using
∂ εkl

∂ εij

= δik δlj , that

∂ W
∂ εij

= σij (2.14)

follows from relation (2.12) or (2.13).

The time differentiation of relation (2.13) gives, using eqs. (2.9) and (2.10), and

symmetry cklij = cijkl ,

Ẇ = σij ε̇ij . (2.15)

Due to symmetry of the stress tensor, σij = σji , relation (2.15) can be written as

Ẇ = σij u̇i,j . (2.16)

Let us integrate relation (2.16) from the initial time t0 until the final time t1 (after

the earthquake) realizing that ui (t0) = 0 and τij (t0) = 0. For brevity we will use

the following notation:

W0 = W (t0) , W1 = W (t1) , u1
i = ui (t1) , τ 1

ij = τij (t1) . (2.17)

The integration of relation (2.16) gives
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W1 − W0 =

∫ t1

t0

σij u̇i,j dt =

=

∫ t1

t0

(
σ0

ij + τij

)
u̇i,j dt =

= σ0
ij u1

i ,j +

∫ t1

t0

τij u̇i,j dt =

= σ0
ij u1

i ,j + [ τij ui,j ]t=t1
t=t0

−
∫ t1

t0

τ̇ij ui,j dt =

= σ0
ij u1

i ,j + τ 1
ij u1

i ,j −
∫ t1

t0

τ̇ij ui,j dt .

(2.18)

The integrand in the last line of eq. (2.18) can be written as

τ̇ij ui,j = cijkl u̇k,l ui,j =

= cijkl
d

dt
( uk,l ui,j ) − cijkl uk,l u̇i,j .

(2.19)

Using formal re-indexing (i ↔ k, j ↔ l), and symmetry cklij = cijkl we obtain

cijkl u̇k,l ui,j = cijkl
d

dt
( uk,l ui,j ) − cijkl u̇k,l ui,j (2.20)

and

cijkl u̇k,l ui,j =
1

2
cijkl

d

dt
( uk,l ui,j ) . (2.21)

Using eqs. (2.19) and (2.21) the integral in the last line of eq. (2.18) can be written as

−
∫ t1

t0

1

2
cijkl

d

dt
( uk,l ui,j ) dt = − 1

2
cijkl u1

k,l u1
i ,j = − 1

2
τ 1
ij u1

i ,j . (2.22)

Then eq. (2.18) yields

W1 − W0 = σ0
ij u1

i ,j + τ 1
ij u1

i ,j −
1

2
τ 1
ij u1

i ,j (2.23)

and

W1 = W0 + σ0
ij u1

i ,j +
1

2
τ 1
ij u1

i ,j (2.24)

or, using relation (2.9) ,

W1 = W0 +
1

2

(
σ1

ij + σ0
ij

)
u1

i ,j , (2.25)
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which are the desired relations given in Kostrov and Das (1988) on page 151.

The medium is in equilibrium in the initial state:

0 = σ0
ij,j + fi . (2.26)

Because even in the large earthquakes displacements do not exceed a few meters, it

is reasonable to consider that the gravitational force fi does not change during the

earthquake. The equation of motion during the earthquake is

ρ üi = σij,j + fi , (2.27)

that is

ρ üi =
(

σ0
ij + τij

)
,j + fi . (2.28)

Subtracting equation of equilibrium before the earthquake, eq. (2.26), from eq. (2.28)

gives

ρ üi = τij,j (2.29)

during the earthquake.

3 Models of Seismoactive Fault and Earthquake

Rupture

Here we introduce basic models of fracture as well as the realistic model of a seismoac-

tive fault and earthquake fracturing. What follows is based on texts by Kostrov and

Das (1988), Scholz (2002), Cocco et al. (2007), Rice and Cocco (2007), and Moczo et

al. (2007).

3.1 Griffith’s Static Crack

A strength of a brittle solid material can be defined as the maximum stress that the

given material is capable to support under given conditions. A fracture, a loss of con-

tinuity of the material, must involve the breaking of atomic bonds across a lattice
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plane. An estimate of the stress required to break the atomic bonds gives a theoretical

strength of the material. The theoretical strength from such estimate is 5-10 GPa. This

value is, however, two to three orders of magnitude greater than the strength of real

materials.

Real materials contain imperfections that cause stress concentrations - locally in-

creased stresses. These stress concentrations can lead to material failures at much lower

stresses than the theoretical strength of materials.

Consider, as a simple example, an elliptical hole in an elastic plate under a uniform

tensile stress σL . The stress concentration at the ends of the elliptical hole can be

approximated as

σ ≈ σL

(
1 + 2

c

b

)
, (3.1)

where c and b are semiaxes, and c > b . For a given fixed value of σL , the stress at

the ends of the elliptical hole increases proportionally to c/b . Therefore, for a long

narrow elliptical hole, that is, crack, the stress at the ends (at the crack tips) can reach

value of the theoretical strength even for the loading stress σL much smaller than the

theoretical strength. Consequently, an increase of the stress concentration can lead to

a dynamic instability.

Griffith (1920, 1924) formulated the problem of the tensile crack in the form of the

energy balance, that is, he applied the 1st law of thermodynamics to a volume of an

elastic continuum containing a crack. Griffith’s formulation can be written in the form

δ ( A + Q ) = δΠ + 2 γ δΣ . (3.2)

The work of external forces (tractions acting at a surface enclosing the volume plus

body forces acting throughout the volume) and the heat supplied to the volume,

δ ( A + Q ), is equal to the change of the kinetic and potential energies plus en-

ergy dissipation, δΠ , and an amount of energy necessary to create fracture surface,

2 γ δΣ . Here, γ is the specific surface energy necessary to create a unit area of frac-

ture surface, δΣ is the fracture surface increment, and factor 2 accounts for two faces

of the fracture surface. Griffith considered γ to be a material constant (this is, in

fact, not so; γ may depend on the velocity of the fracture propagation, temperature

and other thermodynamic parameters). Quantity 2γ is called specific fracture work
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or crack-driving force. Equation (3.2) can be viewed as Griffith’s fracture criterion.

Although the physical meaning of the criterion is clear, eq. (3.2) as a global criterion

is not readily applicable for practical applications.

Griffith referred his analysis to the submolecular level. In this sense the Griffith’s

model is the basic model of the microcrack. The fracture surface behind the tensile

crack tip is cohesionless. The fracture is a balance between the available energy to

drive the crack and energy absorbed by inelastic processes exclusively at the crack tip.

Because a finite amount of energy is spent at the crack tip, Griffith’s crack has stress

singularity at the crack tip. Given these characteristics, it is clear that Griffith’s crack

cannot serve as approximation to the real earthquake fracturing.

3.2 Irwin-Orowan’s Crack

Irwin’s contribution to the theory of fracture (Irwin, 1948, 1960) included the applica-

tion of the stress intensity factors, and, together with Orowan (1952), extension of the

Griffith’s concept to microcracks in steel and concept of a quasi-brittle fracture.

Irwin characterized the stress at and ahead of the crack tip using a stress intensity

factors. Irwin’s fracture criterion requires that the stress intensity factor be equal to

the critical stress intensity factor. For simple planar cohesionless/frictionless cracks he

found simple analytical expressions for the stress and critical stress intensity factors. For

the tensile crack, the fracture criterion is (that is, the condition for crack propagation

is met if)

Gc =
K2

c

E
= 2γ. (3.3)

Here Gc is the fracture energy, Kc is the critical stress intensity factor, E is the

effective Young modulus, and γ is the specific surface energy. The criterion yields

fracture energy as the available energy for driving crack. The energy is absorbed by

inelastic processes at the crack tip. It follows for the Griffith’s crack that all the fracture

energy is surface energy.

Irwin extended the Griffith’s concept to microcracks in steel and proposed the con-

cept of quasi-brittle fracture. In fact, his extension was methodologically an extension

to any higher macroscopic level. Around the fracture edge, at a given macroscopic level,
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in a so-called process zone, complex microcracking and plastic deformation occurs, and

microcracks link to create the macroscopic fracture (macrocrack). The concept of the

brittle fracture can be still applied by introducing the effective surface energy γeff

which includes all the energy losses during fracturing and, particularly, plastic work. In

other words, the effective surface energy is a macroscopic measure of the total energy

absorbed during the fracture development within the process zone at the crack tip.

Consequently, the fracture energy in Irwin’s (or Irwin-Orowan’s) crack model is

Gc = 2γeff . (3.4)

We can point out again that although γeff is called surface energy - in correspondence

to the surface energy appearing in eq. (3.3) - it includes not only the surface energy

but also other dissipative mechanisms such as heat.

Note that stress has singularity at the crack tip in both Griffith’s and Irwin’s crack

models.

Although Griffith, Irwin and Orowan considered only tensile crack, the displacement

field of cracks can be categorized into three distinct modes: Mode I (tensile or open-

ing), Mode II (shear in-plane) and Mode III (shear anti-plane). In the tensile Mode I

crack-wall displacements are normal to the plane of the crack. In the shear in-plane

Mode II crack-wall displacements are in the plane of the crack and normal to the crack

edge. In the shear anti-plane Mode III crack-wall displacements are in the plane of the

crack and parallel to the crack edge. The three Modes are illustrated in Fig. 1.

Figure 1. Three distinct modes of 2D cracks. Here 2D means that planes perpendicular to the plane of crack

and crack edge are equivalent. According to Scholz (2002).
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3.3 Breakdown Zone Model

Cohesionless tensile crack and frictionless shear cracks are too far from being realistic.

Therefore Barenblatt (1959) for tensile crack and Ida (1972) for shear cracks introduced

the concept of breakdown process in which finite force between two crack faces varies

continuously from an initial level to some minimum level as slip between two crack

faces increases. The existence of the breakdown zone means finite stress at the crack

tip.

One of the main aspects relevant for earthquake rupturing and particularly for the

fault weakening during earthquake is the traction evolution. The traction evolution

from the initial value to the final (or minimum) value including the phase of traction

drop with an increasing slip occurs within the breakdown (or process) zone that is a

finite-extent zone at the crack edge. Different physical processes can yield a traction

evolution consistent with that behavior. The shapes of the traction-slip curves can

differ for different constitutive formulations for the breakdown process but all of them

have to be consistent with the well established traction degradation with an increasing

slip.

Cocco et al. (2007) defined the breakdown zone as the region of a locally 2D crack

between the crack tip and point having minimum traction behind the crack tip.

One formulation of the breakdown zone is the linear slip weakening model (Ida,

1972; Palmer and Rice, 1973; Andrews, 1976a,b). Value of the coefficient of friction in

the linear slip weakening friction law decreases linearly from the value of the coefficient

of static friction, µs , down to the value of the coefficient of kinematic (also called

dynamic) friction, µd , over a characteristic (also called critical) distance Dc :

µf = µs − µs − µd

Dc

l ; l < Dc ,

µf = µd ; l ≥ Dc ,
(3.5)

where l is a slip path length defined by relation (1.10). Equivalently, the slip weakening

friction law can be expressed in terms of the corresponding shear tractions:

|~T f
sh| = |~T s

sh| −
|~T s

sh| − |~T d
sh|

Dc

l ; l < Dc ,

|~T f
sh| = |~T d

sh| ; l ≥ Dc .

(3.6)
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Here |~T s
sh| and |~T d

sh| are the static (also called yield) and kinematic frictional shear

tractions, respectively. In other words, the frictional strength depends only on a cu-

mulative slip path length. Considering the slip weakening friction law means that the

evolution of the traction on the fault is ’prescribed’ a priori. Though the slip weakening

friction law is relatively very simple, in practical applications it is, in fact, very difficult

to estimate or determine reasonable values of coefficients of the static and kinematic

frictions, and value of the critical distance.

Because the slip weakening model involves frictional sliding (that occurs everywhere

behind the crack tip), mechanical work done against frictional stress is irreversible.

3.4 Geological (Finite-thickness) Fault-zone Model

Field geological observations clearly confirm that seismoactive faults or, better, fault

zones have finite thickness and relatively complex structure. Rice and Cocco (2007)

summarize results of field geological and seismological investigations and present a

model of a major fault zone. Their model is shown in Fig. 2.

Figure 2. Schematic picture of a model of a major fault zone based on Rice and Cocco (2007) and Chester

et al. (1993).

A prominent slip surface (thin zone) which may be less than 1-5 mm thick is at

the center of the fault structure. It is a thin zone of principal shearing. The prominent
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slip surface is inside a central ultracataclastic zone (fault core) which may be 10s-100s

mm thick and rich of clay. (Basic explanations of relevant geological terms is given in

the Appendix.) The central ultracataclastic zone is surrounded by a gouge or foliated

gouge which may be 1-10 m thick. The gouge layer consist of fine-grained ground

rock (mylonite). Next to the gouge layer is a broad (10s-100s m thick) damage zone.

The material in the damage zone is highly cracked (fractured), possibly granulated,

poroelastic, fluid saturated, and anisotropic.

The picture of the fault zone should be viewed as schematic. The text in Rice and

Cocco (2007) on the structure seems a little bit ambiguous. Although Fig. 2 clearly dis-

tinguishes the above mentioned zones and layers, the text itself, in our opinion, mixes

up terms fault core, gouge and damage zone. For example, the text says ’In general, the

principal slipping zone contains wear materials or gouge, which can be cohesive or inco-

hesive.’ At other place it is said ’The observations ... allow the proposition of the fault

zone model characterized by the presence of localized slip in a thin zone, the presence

of frictional wear or gouge, a fault core composed of cataclasite and ultracataclasite,

and a broader damage zone (highly fractured, anisotropic, and poroelastic).’

Personal communication with Massimo Cocco clarified that different authors use

term ’gouge’ in different ways. Many of them consider ’gouge’ material as cracked,

fluid saturated and poroelastic material. They assume that such a material fills the

fault core. M. Cocco assumes that the material inside the fault core is much more

cracked and fluid saturated than material in the gouge and damage zones shown in

Fig. 2.

In Chapter 6 we will briefly present candidate fault-weakening mechanisms and

processes which may partly clarify some aspects of present understanding of the fault-

zone structure.

Cocco et al. (2007) point out the main implication of the geological field observa-

tions: faults have a finite thickness (although sometimes very narrow, ≈ mm) and are

filled by gouge and wear materials produced during faulting. One significant conse-

quence of the complex fault structure is the necessity to consider physical quantities

characterizing the earthquake rupture process (shear traction, slip and slip rate) in

a macroscopic sense or as a phenomenological description of complex processes. The
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shear traction, slip and slip rate should be considered as equivalent physical quantities

acting on the walls of the fault zone of the finite thickness.

Cocco et al. (2007) present application and generalization of the concepts and anal-

yses developed for a fault surface to the fault model with finite thickness. In order

to understand their generalization it is necessary to fully understand concepts of the

energy balance of the faulting surface.

4 Thermodynamics of Earthquake Rupture -

Earthquake Energy Balance

Here we closely follow Kostrov and Das (1988) - we perform a detailed derivation of

relations presented in a very concise style by Kostrov and Das. We also show misprints

(errors?) and inconsistencies in the text by Kostrov and Das. We consider it very

important for our future work in the topic to perform a detailed derivation of all

formulas.

The concepts of seismic energy and fracture energy are still being investigated. They

are closely related to the problem of seismic efficiency - how much of the total released

energy goes into the energy of radiated seismic waves.

Recent discussion and investigation is well reflected by, e.g., Cocco et al. (2007),

Fukuyama (2005) and Kanamori (2001).

4.1 Energy Conservation Law for a Continuous Medium

Consider a material volume V of continuum with surface S in which material param-

eters are continuous. Let ~n be a normal vector to surface S pointing from interior of

volume V outward. Consider body force ~f (xk, t) acting in volume V , traction ~T (~n)

acting at surface S , and heat-flux vector ~q (~n). Here xk ; k ∈ 1, 2, 3 are Cartesian

coordinates and t is time. The configuration is shown in Fig. 3. Given the chosen

configuration, qini is the rate at which heat is transmitted (per unit area) in the ~n
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direction across surface locally perpendicular to ~n . ~T (~n) is the traction with which

material outside volume V acts upon material inside V .

Figure 3. Material volume V of a smooth continuum bounded by surface S .

The 1st law of thermodynamics, the energy conservation law, applied to volume V

means

Ȧ + Q̇ = U̇ + K̇ , (4.1)

where Ȧ is the rate of work of external forces (body forces and surface tractions), Q̇

is the rate of heat supplied to volume V , U̇ is the rate of increase of internal energy,

and K̇ is the rate of increase of kinetic energy. Elaborate individual terms in eq. (4.1).

The rate of doing mechanical work is

Ȧ =

∫

S

Ti u̇i dS +

∫

V

fi u̇i dV =

=

∫

S

σij nj u̇i dS +

∫

V

fi u̇i dV =

=

∫

V

[ ( σij u̇i ),j + fi u̇i ] dV =

=

∫

V

[ ( σij,j + fi ) u̇i + σij u̇i,j ] dV =

=

∫

V

[ ρ üi u̇i + σij u̇i,j ] dV =

=

∫

V

[
1

2
ρ

∂

∂t
(u̇i u̇i) + σij u̇i,j

]
dV ,

(4.2)

where we applied Gauss’s divergence theorem and used equation of motion,

ρ üi = σij,j + fi . (4.3)
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Note that, obviously, we would get the final relation for the rate of mechanical work

even if fi = 0. The rate of heating is

Q̇ = −
∫

S

qi ni dS = −
∫

V

qi,i dV . (4.4)

Denoting a volume density of internal energy by U , the rate of increase of internal

energy can be written as

U̇ =
d

dt

∫

V

U dV =

∫

V

U̇ dV . (4.5)

The time rate of increase of the kinetic energy can be written as

K̇ =
d

dt

∫

V

1

2
ρ u̇i u̇i dV =

∫

V

1

2
ρ

∂

∂t
( u̇i u̇i ) dV . (4.6)

In eqs. (4.5) and (4.6) we made use of the fact that in the Lagrangian description

the volume moves with the particles and the particle mass ρ dV is constant in time.

Substitution of eqs. (4.2), (4.4) - (4.6) into eq. (4.1) yields
∫

V

(
σij u̇i,j − qi,i − U̇

)
dV = 0 . (4.7)

Due to arbitrariness of volume V and continuity of the integrand, the integrand must

vanish identically. Then

U̇ = σij u̇i,j − qi,i . (4.8)

Because, due to symmetry of the stress tensor,

σij u̇i,j = σij ε̇i,j , (4.9)

eq. (4.8) can be written as

U̇ = σij ε̇i,j − qi,i . (4.10)

Consider time derivative of the function of the energy of deformation W :

d

dt

(
1

2
cijkl εkl εij

)
=

1

2
cijkl ε̇kl εij +

1

2
cijkl εkl ε̇ij =

=
1

2
cklij ε̇ij εkl +

1

2
cijkl εkl ε̇ij =

=
1

2
cijkl ε̇ij εkl +

1

2
cijkl εkl ε̇ij =

= cijkl εkl ε̇ij ,

(4.11)
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where we used symmetry of tensor of elastic coefficients,

cklij = cijkl . (4.12)

Thus we have

dW
dt

=
d

dt

(
1

2
σij εij

)
= σij ε̇ij . (4.13)

Equations (4.8) and (4.10) are local forms of the energy conservation law. They mean

that the rate of increase of the internal energy is equal to the rate of energy of defor-

mation (the rate of internal work) plus the rate of heating.

4.2 Energy Budget on a Fault Surface

Consider volume V intersecting fracture surface Σ(t) over an area ∆Σ not containing

fracture’s edge. The geometrical configuration of the problem is illustrated in Fig.

4. At the fracture surface, displacement vector is discontinuous. The displacement

Figure 4. Material volume V intersecting fracture surface Σ(t) . The volume does not contain fracture’s

edge.

discontinuity (slip) is defined by

∆ui = ui (Σ+) − ui (Σ−) = u+
i − u−i . (4.14)

Due to friction we have to assume that part of mechanical work against frictional

traction produces heat at the fracture surface. The heat flux from the fracture surface

causes discontinuity

∆ qi = q+
i − q−i . (4.15)
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Let γ be a specific internal surface energy (the energy needed to create a unit area

of one face of a fracture). Then the rate of energy spent in creation area ∆Σ of the

fracture surface is

U̇Σ =
d

dt

∫

∆Σ

2 γ dS =

∫

∆Σ

2 γ̇ dS . (4.16)

The 1st law of thermodynamics applied to volume V can be written as

Ȧ + Q̇ = U̇ + K̇ + U̇Σ . (4.17)

The heat produced by the fracture is included in Q̇ . In principle, U̇Σ could be included

in U̇ . U̇ in eq. (4.17) relates only to the internal energy in volume, say, U̇V , not to the

internal energy of the fracture surface. In this respect, eq. (4.17) can be written as

Ȧ + Q̇ = U̇V + K̇ + U̇Σ . (4.18)

The rate of doing mechanical work is

Ȧ =

∫

S

Ti u̇i dS +

∫

V

fi u̇i dV =

=

∫

S

σij nj u̇i dS +

∫

V

fi u̇i dV .

(4.19)

Because displacement is discontinuous across surface Σ , Gauss’s divergence theorem

cannot be directly applied to volume V with surface S . Therefore we consider
∫

V

( σij u̇i ),j dV =

∫

V+

(
σ+

ij u̇+
i

)
,j dV +

∫

V−

(
σ−ij u̇−i

)
,j dV =

=

∫

S+

σ+
ij u̇+

i nj dS +

∫

∆Σ

σ+
ij u̇+

i (− νj) dS +

+

∫

S−
σ−ij u̇−i nj dS +

∫

∆Σ

σ−ij u̇−i νj dS =

=

∫

S

σij u̇i nj dS −
∫

∆Σ

σij ∆u̇i νj dS ,

(4.20)

since traction is continuous across the fault surface ∆Σ . Substituting eq. (4.20) into

eq. (4.19) we obtain

Ȧ =

∫

V

[ ( σij u̇i ),j + fi u̇i ] dV +

∫

∆Σ

σij ∆u̇i νj dS . (4.21)

The first integral on the l.h.s. of the equation can be rewritten in the same way as in

section 4.1,
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Ȧ =

∫

V

[
1

2
ρ

∂

∂t
( u̇i u̇i) + σij ε̇ij

]
dV +

∫

∆Σ

σij ∆u̇i νj dS , (4.22)

where we also used eq. (4.9). Accounting in a similar way for the discontinuity in the

heat flux at fracture surface ∆Σ we obtain for the rate of heating

Q̇ = −
∫

S

qi ni dS = −
∫

V

qi,i dV −
∫

∆Σ

∆qi νi dS . (4.23)

The rates of change of internal and kinetic energies are

U̇V =

∫

V

U̇ dV (4.24)

and

K̇ =

∫

V

1

2
ρ

∂

∂t
( u̇i u̇i ) dV . (4.25)

Substitution of eqs. (4.16) and (4.22) - (4.25) into eq. (4.18) yields

∫

V

(
σij ε̇ij − qi,i − U̇

)
dV =

=

∫

∆Σ

[ ( −σij ∆u̇i + ∆qj ) νj + 2γ̇ ] dS . (4.26)

The l.h.s. of eq. (4.26) vanishes due to eq. (4.10). Then, due to arbitrariness of ∆Σ

and continuity of the integrand we obtain

σij νj ∆u̇i = 2γ̇ + ∆qi νi . (4.27)

The equation means that the frictional work is partly spent in the change of the inter-

nal surface energy and partly released into the medium as heat.

Comment on the surface energy:

Assume that the surface energy depends only on the thermodynamic state of the frac-

ture itself and not on the relative motion of its faces. Let, e.g., be the thermodynamic

state determined by the surface temperature,

γ = γ ( T ) . (4.28)

Then eq. (4.27) can be written as

σij νj ∆u̇i = 2
∂γ

∂T
Ṫ + ∆qi νi . (4.29)
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Comment on the concept of the heat rate:

At the molecular level (say, microlevel), the exchange of energy between a system and

its environment results from direct interaction of molecules, that is, from external forces

acting on the system of molecules.

In a macroscopic description (say, macrolevel) we work with a continuous medium

made of elementary particles of continuum. We do not look at internal structure of a

particle. A size of the particle depends on a problem we want to solve. At the macrolevel

we can describe (recognize) a portion of energy supplied by environment to volume V

of continuum as a work of tractions acting on a surface of the volume. Obviously, what

we recognize as stress and traction is determined by the size of the elementary particle.

That portion of the energy exchange between volume V and its environment that

cannot be described as (reduced to) a work of external tractions we must consider as

a heat. This heat clearly is due to the internal structure of the considered elementary

particle of continuum.

We can think of some macrolevel, say, intermediate macrolevel, between the molec-

ular level and the very macrolevel we work with. At the intermediate macrolevel,

rapid spatial and temporal variations of stresses corresponding to this intermediate

macrolevel, do not affect magnitude of the stress at macrolevel. The work of stresses

at the intermediate macrolevel has to be included as heat at the macrolevel. This

is particularly true for the energy transferred by short waves recognizable at the in-

termediate macrolevel but smeared out at the macrolevel. Thus, term ∆qiνi in eqs.

(4.27) and (4.29) includes the heat and radiation losses recognizable at the intermedi-

ate macrolevel.

An other aspect of the radiation loss is that the shorter the wavelength, the shorter a

distance at which the short-wave radiation is transformed into heat due to propagation.

4.3 Energy Budget at a Fracture Edge

Consider now volume V intersecting fracture surface Σ(t) over an area ∆Σ and con-

taining fracture’s edge, ∆L(t). The geometrical configuration of the problem is illus-

trated in Fig. 5. Due to the presence of the fracture’s edge in volume V the integrands

in the first integrals in eqs. (4.5), (4.6) and (4.16) might be singular at the fracture’s
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Figure 5. Material volume V intersecting fracture surface Σ(t) and containing fracture’s edge.

edge. Therefore, it is not possible to differentiate with respect to time under the integral

sign. In order to avoid singularity, consider a small toroidal volume Vε surrounding the

fracture’s edge. Then we can make use of relation

d

dt

∫

V

φ dV =
d

dt
lim
ε→0

∫

V−Vε

φ dV = lim
ε→0

d

dt

∫

V−Vε

φ dV . (4.30)

However, because the fracture’s edge propagates, the small toroidal volume Vε propa-

gates with the edge and the volume depends on time:

d

dt

∫

V

φ dV = lim
ε→0

d

dt

∫

V−Vε(t)

φ dV . (4.31)

Then

lim
ε→0

d

dt

∫

V−Vε(t)

φ dV = lim
ε→0

∫

V−Vε(t)

φ̇ dV + lim
ε→0

∫

S+Sε(t)

φ ẋj nj dS . (4.32)

Because ẋj = 0 on S and denoting the velocity of the fracture’s edge vj = ẋj , we

obtain finally for our volume V

d

dt

∫

V

φ dV = lim
ε→0

∫

V−Vε(t)

φ̇ dV + lim
ε→0

∫

Sε(t)

φ vj nj dS . (4.33)

We apply relation (4.33) to time rates of the internal and kinetic energies:

U̇V + K̇ + U̇Σ =

= lim
ε→0

d

dt

[ ∫

V−Vε(t)

(
U +

1

2
ρ u̇i u̇i

)
dV +

∫

∆Σ(t)

2γ dS

]
=

= lim
ε→0

{ ∫

V−Vε(t)

[
U̇ +

1

2
ρ

∂

∂t
(u̇i u̇i)

]
dV +

∫

∆Σ(t)

2γ̇ dS +

+

∫

Sε(t)

(
U +

1

2
ρ u̇i u̇i

)
vj nε

j dS

}
+

∫

∆L(t)

2γ v dL .

(4.34)
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Here v = (vi vi)
1
2 . For the rate of work of external forces we can write

Ȧ = lim
ε→0

[ ∫

S

σij u̇i nj dS +

∫

V−Vε(t)

fi u̇i dV

]
=

= lim
ε→0

[ ∫

V−Vε(t)

( σij u̇i ),j dV −
∫

Sε

σij u̇i nε
j dS +

+

∫

∆Σ(t)

σij ∆u̇i νj dS +

∫

V−Vε(t)

fi u̇i dV

]
,

(4.35)

Ȧ = lim
ε→0

{ ∫

V−Vε(t)

[ ( σij u̇i ),j + fi u̇i ] dV −

−
∫

Sε

σij u̇i nε
j dS +

∫

∆Σ(t)

σij ∆u̇i νj dS

}
,

(4.36)

Ȧ = lim
ε→0

{ ∫

V−Vε(t)

[
1

2
ρ

∂

∂t
( u̇i u̇i ) + σij u̇i,j

]
dV −

−
∫

Sε

σij u̇i nε
j dS +

∫

∆Σ(t)

σij ∆u̇i νj dS

}
.

(4.37)

At the r.h.s. of the 1st line in eq. (4.35) we clearly recognize the work of external forces:

the first integral is the rate of doing mechanical work by tractions at surface S , the

second integral is the rate of doing mechanical work by body forces throughout volume

V − Vε . At the r.h.s. of eq. (4.37) we recognize the rates of change of the kinetic energy

and energy of deformation in volume V − Vε , and rates of doing mechanical work by

tractions at surface Sε and tractions at surface ∆Σ against friction.

In analogy to the rate of work of tractions at surface S , we have for the rate of

heating

Q̇ = lim
ε→0

[
−

∫

S

qi ni dS

]
=

= lim
ε→0

[
−

∫

V−Vε(t)

qi,i dV +

∫

Sε

qi nε
i dS −

−
∫

∆Σ(t)

∆qi νi dS

]
.

(4.38)

Substitution of eqs. (4.34), (4.37) and (4.38) into eq. (4.18) yields
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lim
ε→0

{ ∫

V−Vε(t)

[
σij u̇i,j − qi,i − U̇

]
dV +

+

∫

Sε

[
− σij u̇j + qi −

(
U +

1

2
ρ u̇j u̇j

)
vi

]
nε

i dS +

+

∫

∆Σ(t)

[ σij νj ∆u̇i − ∆qi νi − 2γ̇ ] dS

}
−

−
∫

∆L(t)

2γ v dL = 0 .

(4.39)

The first and third terms in eq. (4.39) vanish due to eqs. (4.8) and (4.27), respectively.

Then eq. (4.39) reduces to

lim
ε→0

∫

Sε

[
− σij u̇j + qi −

(
U +

1

2
ρ u̇j u̇j

)
vi

]
nε

i dS −

−
∫

∆L(t)

2γ v dL = 0 .

(4.40)

Denote by lε the curve obtained as the cross-section of surface Sε normal to the

fracture’s edge. Then

∫

Sε

φ dS =

∫

∆L(t)

( ∫

lε

φ dl

)
dL (4.41)

and eq. (4.40) can be rewritten

∫

∆L(t)

{
2γ v + lim

ε→0

∫

lε

[
σij u̇j − qi +

+

(
U +

1

2
ρ u̇j u̇j

)
vi

]
nε

i dl

}
dL = 0 . (4.42)

Due to arbitrariness of volume V and, consequently, ∆L(t), and assuming continuity

of the integrand,

2γ v + (4.43)

+ lim
ε→0

∫

lε

[
σij u̇j − qi +

(
U +

1

2
ρ u̇j u̇j

)
vi

]
nε

i dl = 0 .

Integrate eq. (4.10):

U = U 0 +

∫ t

0

( σij ε̇ij − qi,i ) dt . (4.44)

Here, U 0 is the volume density of internal energy at time t = 0. Substituting eq.

(4.44) into eq. (4.43) we obtain
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2γ v + lim
ε→0

∫

lε

{
σij u̇j − qi + (4.45)

+

[
U 0 +

∫ t

0

( σkj ε̇kj − qj,j ) dt +
1

2
ρ u̇j u̇j

]
vi

}
nε

i dl = 0 .

Because U 0 is finite at the fracture edge, in the limit for ε → 0 the corresponding term

in eq. (4.45) will vanish. Then

2γ v + lim
ε→0

∫

lε

{
σij u̇j + vi

[ ∫ t

0

σkj ε̇kj dt +
1

2
ρ u̇j u̇j

]}
nε

i dl −

− lim
ε→0

∫

lε

{
qi + vi

∫ t

0

qj,j dt

}
nε

i dl = 0 . (4.46)

The second term in the equation, taken with the opposite sign, represents mechanical

energy flux, that is work done at the fracture’s edge.

5 Seismic Energy

Seismic energy is defined as the total energy transmitted by seismic waves through

surface S0 completely enclosing the source:

Eq = −
∫ t1

t0

dt

∫

S0

τij u̇i nj dS , (5.1)

where t1 is the source duration and the waves reflected from the free surface of the Earth

are neglected. Definition of Eq by eq. (5.1) enables measurement of seismic energy. In

practical applications S0 is chosen as a sufficiently large sphere and seismogram is

approximated by a set of sinusoids. (This yields a well-known Galitzin’s formula in

seismology.)

Let Ep be the potential energy in volume V and ∆Ep its change during the earth-

quake. The change in the potential energy consists of the changes in the elastic and

gravitational energies,

∆Ep =

∫

V

( W1 − W0 − fi u1
i

)
dV , (5.2)

and, considering relation (2.25) for the density of the elastic energy,
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∆Ep =

∫

V

[
1

2

(
σ1

ij + σ0
ij

)
u1

i ,j − fi u1
i

]
dV , (5.3)

where fi is the gravitational force. We consider that fi during the earthquake does

not change. We also consider states just before and after the earthquake as states of

equilibrium.

Therefore,

0 = σ0
ij,j + fi (5.4)

and

0 = σ1
ij,j + fi . (5.5)

It follows from eqs. (5.4) and (5.5) that

1

2

(
σ1

ij,j + σ0
ij,j

)
= − fi . (5.6)

Using relation (5.6) the integrand in eq. (5.3) can be written as

1

2

(
σ1

ij + σ0
ij

)
u1

i ,j +
1

2

(
σ1

ij,j + σ0
ij,j

)
u1

i =

=
1

2

[ (
σ1

ij + σ0
ij

)
u1

i

]
,j .

(5.7)

Then we have

∆Ep =
1

2

∫

V

[ (
σ1

ij + σ0
ij

)
u1

i

]
,j dV . (5.8)

Assuming Σ1 as the final ruptured area, the application of the Gauss’s theorem yields

∆Ep =
1

2

∫

S0

(
σ1

ij + σ0
ij

)
u1

i nj dS − 1

2

∫

Σ1

(
σ1

ij + σ0
ij

)
∆u1

i nj dS . (5.9)

The first integral in eq. (5.9) can be neglected if the radius of S0 is sufficiently large.

Then

∆Ep = − 1

2

∫

Σ1

(
σ1

ij + σ0
ij

)
∆u1

i nj dS . (5.10)

Usually it is assumed that the decrease in the potential energy Ep is equal to the

sum of the seismic energy Eq and the work of frictional forces Af on the fault:

−∆Ep = Eq + Af , (5.11)
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where

Af =

∫

Σ1

σ(f)i ∆ui dS (5.12)

and σ(f)i is the magnitude of the frictional force. However, eq. (5.11) is essentially a

new definition of the seismic energy. Equation (5.11) tries to define the seismic energy

using the energy conservation law. The problem is, that such energy conservation law

should be (even if it were assumed that the frictional work is the only loss of energy

during the earthquake)

−∆Ep = ∆ES0 + Af , (5.13)

where ∆ES0 is the energy released from volume V through its surface S0 during the

earthquake:

∆ES0 = −
∫ t1

t0

dt

∫

S0

σij nj u̇i dS . (5.14)

Compared to the integral in (5.1), here the total stress σij is in the integrand instead

of the stress perturbation τij . Consequently, the difference ∆ES0 − Eq has to represent

the work of the initial stress:

∆ES0 − Eq =

∫ t1

t0

dt

∫

S0

σ0
ij nj u̇i dS =

∫

S0

σ0
ij nj u1

i dS , (5.15)

since σ0
ij does not depend on time. In general, the difference is non-zero. Kostrov and

Das (1988) conclude that the non-zero difference means that definition (5.11) does not

agree with definition (5.1).

In an effort to obtain Eq in relation to quantities characterizing the source, consider

the rate of change of the elastic energy in volume V during the earthquake. In derivation

of relation (2.25) we did not assume that state at time t1 is the state of equilibrium.

Therefore, instead of final time t1 after the earthquake we can write eq. (2.25) for any

time t > t0 during the earthquake:

W ( t ) = W0 +
1

2

(
σij + σ0

ij

)
ui,j . (5.16)

The time rate of change of the elastic energy in volume V is then

Ẇ =
d

dt

∫

V

1

2

(
σij + σ0

ij

)
ui,j dV . (5.17)
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Volume V contains the propagating fracture’s edge where stress and particle velocity

have a singularity (of order 1
2
). Therefore, the time differentiation cannot be directly

applied to the integrand. As in Chapter 4, the integral in eq. (5.17) can be written as

lim
ε→0

d

dt

∫

V−Vε(t)

1

2

(
σij + σ0

ij

)
ui,j dV . (5.18)

Then

Ẇ = lim
ε→0

∫

V−Vε

[
1

2
σ̇ij ui,j +

1

2

(
σij + σ0

ij

)
u̇i,j

]
dV +

+ lim
ε→0

∫

Sε

1

2
σik ui,k vj nj dS .

(5.19)

Note that, Kostrov and Das (1988) in their equation on p. 153 have a negative sign

in front of the surface integral. That and following negative signs on p. 154 can be

explained by a change in the orientation of the normal to surface Sε . We think that

Kostrov and Das (1988), inconsistently with their Chapter 2, consider in Chapter 4

normal oriented outward volume Vε . In our derivation we use normal as shown in Fig.

5.

Using σij = σ0
ij + τij , τij = cijkl uk,l and symmetry cijkl = cklij the integrand

in the volume integral can be rewritten. Then

Ẇ = lim
ε→0

∫

V−Vε

(
τij + σ0

ij

)
u̇i,j dV +

+ lim
ε→0

∫

Sε

1

2
σik ui,k vj nj dS .

(5.20)

Recalling equation of motion for τij , eq. (2.29), and equation of equilibrium for σ0
ij ,

eq. (2.26), the integrand in the volume integral can be further modified

(
τij + σ0

ij

)
u̇i,j =

[ (
τij + σ0

ij

)
u̇i

]
,j −

(
τij + σ0

ij

)
,j u̇i =

= ( σij u̇i ) ,j −
(

τij,j + σ0
ij,j

)
u̇i =

= ( σij u̇i ) ,j − ρ üi u̇i + fi u̇i .

(5.21)

Then

Ẇ = lim
ε→0

∫

V−Vε

[ ( σij u̇i ) ,j − ρ u̇i üi + fi u̇i ] dV

+ lim
ε→0

∫

Sε

1

2
σik ui,k vj nj dS .

(5.22)
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The volume integral can be split into three integrals. The first integral can be rewritten

using Gauss’s divergence theorem:

lim
ε→0

∫

V−Vε

( σij u̇i ) ,j dV =

∫

S0

σij u̇i nj dS −

−
∫

Σ(t)

σij ∆u̇i nj dS + lim
ε→0

∫

Sε

σij u̇i nj dS .

(5.23)

Consider the rate of change of the kinetic energy K :

d

dt
K =

d

dt

∫

V

1

2
ρ u̇i u̇i dV =

=
d

dt
lim
ε→0

∫

V−Vε

1

2
ρ u̇i u̇i dV =

= lim
ε→0

d

dt

∫

V−Vε

1

2
ρ u̇i u̇i dV =

= lim
ε→0

∫

V−Vε

ρ u̇i üi dV + lim
ε→0

∫

Sε

1

2
ρ u̇i u̇i vj nj dS .

(5.24)

The second integral then can be written as

− lim
ε→0

∫

V−Vε

ρ u̇i üi dV = −
(

d

dt
K − lim

ε→0

∫

Sε

1

2
ρ u̇i u̇i vj nj dS

)
. (5.25)

Consider the time rate of change of the gravitational energy of volume V :

d

dt
Eg =

d

dt

∫

V

( −fi ui) dV = lim
ε→0

∫

V−Vε

( −fi u̇i) dV . (5.26)

Equation (5.22) can be now written in the form

Ẇ =

∫

S0

σij u̇i nj dS −
∫

Σ(t)

σij ∆u̇i nj dS + lim
ε→0

∫

Sε

σij u̇i nj dS

− d

dt
K + lim

ε→0

∫

Sε

1

2
ρ u̇i u̇i vj nj dS − d

dt
Eg

+ lim
ε→0

∫

Sε

1

2
σik ui,k vj nj dS ,

(5.27)

Ẇ = − K̇ − Ėg +

∫

S0

σij u̇i nj dS −
∫

Σ(t)

σij ∆u̇i nj dS +

+ lim
ε→0

∫

Sε

(
σij u̇i nj +

1

2
ρ u̇i u̇i vj nj +

1

2
σik ui,k vj nj

)
dS .

(5.28)

Kostrov and Das (1988) denote the last term as
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− Ėγeff
= − 2

d

dt

∫

Σ(t)

γeff dS . (5.29)

Integration of eq. (5.28) from time t0 until time t1 gives

∆ ( W + Eg ) + ∆ Eγeff
=

∫ t1

t0

dt

∫

S0

σij u̇i nj dS −

−
∫ t1

t0

dt

∫

Σ(t)

σij ∆u̇i nj dS .

(5.30)

∆ Eγeff
is the fracture work and the kinetic energies at time t0 and t1 are zero because

both states are states of equilibrium. The first term is the change of the potential

energy, ∆ Ep = ∆ ( W + Eg ). The first term on the r.h.s. is, according to eq. (5.14),

−∆ ES0 . The second term on the r.h.s. is −Af . Thus, eq. (5.30) can be written as

∆ Ep + ∆ Eγeff
+ ∆ ES0 + Af = 0 . (5.31)

Compared to eq. (5.13), eq. (5.31) includes not only frictional losses but also the

energy dissipation due to fracture.

The first term on the r.h.s. of eq. (5.30) can be rewritten as
∫ t1

t0

dt

∫

S0

σij u̇i nj dS =

∫ t1

t0

dt

∫

S0

(
σij − σ0

ij

)
u̇i nj dS +

+

∫ t1

t0

dt

∫

S0

σ0
ij u̇i nj dS =

=

∫ t1

t0

dt

∫

S0

(
σij − σ0

ij

)
u̇i nj dS +

+

∫

S0

σ0
ij u1

i nj dS ,

(5.32)

since ui (t0) = 0. Considering eq. (5.1), eq. (5.32) gives
∫ t1

t0

dt

∫

S0

σij u̇i nj dS = −Eq +

∫

S0

σ0
ij u1

i nj dS . (5.33)

Substitution of eq. (5.33) into eq. (5.30) gives

∆ Ep + ∆ Eγeff
= − Eq +

∫

S0

σ0
ij u1

i nj dS −

−
∫ t1

t0

dt

∫

Σ(t)

σij ∆u̇i nj dS .

(5.34)

Substitution of relation for the change of the potential energy, eq. (5.9), into eq. (5.34)

gives
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Eq = − ∆ Eγeff
+

∫

S0

σ0
ij u1

i nj dS − 1

2

∫

S0

(
σ1

ij + σ0
ij

)
u1

i nj dS

−
∫ t1

t0

dt

∫

Σ(t)

σij ∆u̇i nj dS +
1

2

∫

Σ1

(
σ1

ij + σ0
ij

)
∆u1

i nj dS ,

(5.35)

Eq =
1

2

∫

S0

(
σ0

ij − σ1
ij

)
u1

i nj dS

−
∫ t1

t0

dt

∫

Σ(t)

σij ∆u̇i nj dS +
1

2

∫

Σ1

(
σ1

ij + σ0
ij

)
∆u1

i nj dS

− ∆ Eγeff
.

(5.36)

Equation (5.36) corresponds to eq. (4.4.21) of Kostrov and Das (1988) except the sign

in the third term on the r.h.s. Equation (4.4.21) has wrong ’− ’ sign in the integrand.

The second and third integrals in eq. (5.36) can be rewritten:

−
∫ t1

t0

dt

∫

Σ(t)

σij ∆u̇i nj dS +
1

2

∫

Σ1

(
σ1

ij + σ0
ij

)
∆u1

i nj dS =

= −
∫ t1

t0

dt

∫

Σ(t)

σ0
ij ∆u̇i nj dS −

∫ t1

t0

dt

∫

Σ(t)

τij ∆u̇i nj dS +

+
1

2

∫

Σ1

(
σ1

ij + σ0
ij

)
∆u1

i nj dS .

(5.37)

The first integral on the r.h.s can be rewritten as

−
∫ t1

t0

dt

∫

Σ( t )

σ0
ij ∆u̇i nj dS = −

∫ t1

t0

dt

∫

Σ1

Φ̇j ( t ) nj dS , (5.38)

where

Φ̇j ( t ) = σ0
ij ∆u̇i ( t ) at Σ ( t )

= 0 at Σ1 − Σ ( t ) ,

(5.39)

that is,

Φj ( t1 ) = σ0
ij ∆u1

i at Σ1 ,

Φj ( t0 ) = 0 at Σ1 ,

(5.40)

−
∫ t1

t0

dt

∫

Σ1

Φ̇j ( t ) nj dS = −
∫

Σ1

dS

∫ t1

t0

Φ̇j ( t ) nj dt

= −
∫

Σ1

dS [ Φj ( t1 ) − Φj ( t0 ) ] nj

= −
∫

Σ1

σ0
ij ∆u1

i nj dS .

(5.41)
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Thus we have from eqs. (5.38), (5.40) and (5.41) that

−
∫ t1

t0

dt

∫

Σ( t )

σ0
ij ∆u̇i nj dS = −

∫

Σ1

σ0
ij ∆u1

i nj dS . (5.42)

Substitution of eq. (5.42) into the r.h.s. of eq. (5.37) gives

−
∫ t1

t0

dt

∫

Σ(t)

σij ∆u̇i nj dS +
1

2

∫

Σ1

(
σ1

ij + σ0
ij

)
∆u1

i nj dS =

= −
∫ t1

t0

dt

∫

Σ(t)

τij ∆u̇i nj dS +
1

2

∫

Σ1

(
σ1

ij − σ0
ij

)
∆u1

i nj dS .

(5.43)

Substitution of eq. (5.43) into eq. (5.36) gives

Eq =
1

2

∫

S0

(
σ0

ij − σ1
ij

)
u1

i nj dS −
∫ t1

t0

dt

∫

Σ(t)

(
σij − σ0

ij

)
∆u̇i nj dS

+
1

2

∫

Σ1

(
σ1

ij − σ0
ij

)
∆u1

i nj dS − ∆ Eγeff
,

(5.44)

where we replaced τij by σij − σ0
ij in the second integral on the r.h.s. Equation (5.44)

means that the seismic energy Eq does not depend separately on σij or σ0
ij but only

on the stress perturbation τij = σij − σ0
ij .

An other aspect of relation (5.44) is that the seismic energy depends on the choice

of surface S0 which is not a characteristic parameter of the earthquake source itself.

Because the static displacements decrease with distance R from the source faster

than d/R , where d is the source dimension, and the final stress perturbation is ex-

pressed by the first derivative of u1
i and thus decreases faster than d/R2 , choosing for

S0 a sphere of a sufficiently large radius R it is found that the first term in eq. (5.44)

decreases faster than d/R and consequently may be made arbitrarily small. Thus, if

S0 is chosen in this way, relation (5.44) becomes

Eq =
1

2

∫

Σ1

(
σ1

ij − σ0
ij

)
∆u1

i nj dS −
∫ t1

t0

dt

∫

Σ(t)

(
σij − σ0

ij

)
∆u̇i nj dS

− ∆ Eγeff
,

(5.45)

or, putting

∆ Eγeff
= 2 γeff S , (5.46)

where S is the area of Σ1 ,

33



Eq =
1

2

∫

Σ1

(
σ1

ij − σ0
ij

)
∆u1

i nj dS −
∫ t1

t0

dt

∫

Σ(t)

(
σij − σ0

ij

)
∆u̇i nj dS

− 2 γeff S .

(5.47)

(Equation (5.47) corresponds to eq. (4.4.23) in Kostrov and Das (1988) ).

The integrand in the second integral on the r.h.s. of eq. (5.47) can be written as

(
σij − σ0

ij

)
∆u̇i nj =

d

dt

[ (
σij − σ0

ij

)
∆ui

]
nj −

−
[

d

dt

(
σij − σ0

ij

) ]
∆ui nj =

=
d

dt

[ (
σij − σ0

ij

)
∆ui

]
nj − σ̇ij ∆ui nj .

(5.48)

The second integral is then

−
∫ t1

t0

dt

∫

Σ(t)

(
σij − σ0

ij

)
∆u̇i nj dS =

= −
∫ t1

t0

dt

∫

Σ(t)

d

dt

[ (
σij − σ0

ij

)
∆ui

]
nj dS +

+

∫ t1

t0

dt

∫

Σ(t)

σ̇ij ∆ui nj dS .

(5.49)

Evaluate the time integral in the first term on the r.h.s..

−
∫ t1

t0

dt

∫

Σ(t)

d

dt

[ (
σij − σ0

ij

)
∆ui

]
nj dS =

= −
∫ t1

t0

dt

∫

Σ1

Φ̇j ( t ) nj dS ,

(5.50)

where

Φ̇j ( t ) =
d

dt

[ (
σij − σ0

ij

)
∆ui

]
at Σ ( t )

= 0 at Σ1 − Σ ( t ) ,

(5.51)

that is,

Φj ( t1 ) =
(

σ1
ij − σ0

ij

)
∆u1

i at Σ1 ,

Φj ( t0 ) = 0 at Σ1 .

(5.52)
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−
∫ t1

t0

dt

∫

Σ1

Φ̇j ( t ) nj dS = −
∫

Σ1

dS

∫ t1

t0

Φ̇j ( t ) nj dt =

= −
∫

Σ1

dS [ Φj ( t1 ) − Φj ( t0 ) ] nj =

= −
∫

Σ1

(
σ1

ij − σ0
ij

)
∆u1

i nj dS .

(5.53)

Then, using eqs. (5.49), (5.50) and (5.53) we can write relation (5.47) as

Eq = − 1

2

∫

Σ1

(
σ1

ij − σ0
ij

)
∆u1

i nj dS +

∫ t1

t0

dt

∫

Σ(t)

σ̇ij ∆ui nj dS −

− 2 γeff S

(5.54)

or, as in Kostrov and Das (1988), eq. (4.4.24),

Eq = +
1

2

∫

Σ1

(
σ0

ij − σ1
ij

)
∆u1

i nj dS +

∫ t1

t0

dt

∫

Σ(t)

σ̇ij ∆ui nj dS −

− 2 γeff S .

(5.55)

Equation (5.55) is the final relation for seismic energy Eq in terms of the source pa-

rameters. The second term in the equation is called the Kostrov term (Cocco et al.,

2007).

6 Realistic Fault-zone Model and Dynamic

Weakening Processes

In our future work (diploma thesis) we will focus on generalization of the thermodynam-

ics of earthquake rupture to the finite-thickness fault zone model. Such a generalization

has to account for important well established facts of the earthquake source dynamics.

As we mentioned in section on the breakdown zone model, one of the key aspects of

the earthquake source dynamics is the understanding of the well established fact of the

stress degradation with an increasing slip, that is process of the dynamic weakening.

The dynamic weakening processes are becoming a subject of intensive research related

to the realistic finite-thickness fault zone model ( illustrated in Fig. 2). Rice and Cocco
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(2007) present probably the first comprehensive review of results of field, laboratory

and theoretical investigations of the dynamic weakening processes. Here we provide a

concise outline of the basic mechanisms presented in a greater detail in paper by Rice

and Cocco (2007).

These mechanisms have to be investigated as possible candidates for the dynamic

weakening given the fact the earthquake slips are often accommodated within rela-

tively very thin (mm) zones. Assuming an adiabatic shearing, large rapid slip (equal

or larger than 1 m and more than 0.1 m/s) would lead to the increase in temperature

larger than approximately 1000◦C. Such a sudden increase in temperature would lead

to melting and, assuming relatively low viscosity, to a mechanical lubrication of the

fault. The lubrication would decrease the coefficient of friction and lead to decrease

of shear traction, that is to the dynamic weakening. At the same time, melting would

lead to formation of pseudotachylites. The problem is that pseudotachylites or other

indications of the frictional melting are only very rarely found in the fault zones. One

possible explanation might be that the pseudotachylites are not preserved in the ma-

ture faults. An other and more likely explanation is that melting might be a very rare

process because other phenomena and mechanisms are dominant in the dynamic fault

weakening.

6.1 Flash Heating and Weakening of Micro-asperity contacts

A sufficiently fast slip means that the significantly heated zone is thin (relative to the

contact diameter). The increase in temperature leads to decrease in contact’s shear

strength. The thinness of the heated zone means that the capacity of the contact to

support normal traction and the net area of the contact are not much affected. Because

coefficient of friction is given by the ratio of the shear traction to normal traction, the

friction coefficient is consequently reduced with the slip rate.

6.2 Thermal Pressurization

The thermal pressurization mechanism assumes presence of fluids (typically water) in

pores, and the following relation between the shear traction τ , coefficient of friction f ,
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normal traction σ , and pore pressure p :

τ = f ( σ − p ) . (6.1)

Frictional heating leads to volume expansion of fluids. The expansion is much larger

than that of the solid cage. The volume expansion of fluids causes increase of pressure in

the pore fluids, that is, pore pressure. (This happens unless a shear-induced dilatancy of

the cage overwhelms the thermal expansion or the gouge is highly permeable.) Because

the normal traction σ typically does not change during slip, the increase of the pore

pressure p reduces the fault strength τ .

Predictions based on the thermal pressurization enabled plausible estimates of the

fracture energy of earthquakes and could explain why strength loss over all but deeper

part of seismogenic zone is too rapid for melting to take place.

The flash heating and thermal pressurization are considered as serious candidates for

dominant processes causing the dynamic fault weakening. Several questions still remain

to be answered. They include validity of relation (6.1), dilatancy of the gouge under

shear traction, and effect of dilatancy and shear on the instantaneous permeability and

poroelastic moduli.

6.3 Silica Gel

Friction experiments on a quartzite confirmed that at the time of deformation a thin

layer coating the sliding surface was able to flow with a relatively low viscosity. Gran-

ulation within the shear zone produces fine silica particles which adsorb water to their

surfaces and form a gel. The gel would consolidate into a strong, amorphous solid, if

shear was stopped. However, the presence of shear continuously disrupts particle bond-

ing so that the fluidized gel deforms at low strength. The gel can be also considered as

a water-infiltrated porous medium. This raises question of its relation to the thermal

pressurization. The mechanism also depends on the presence of quartzite in the zone.

6.4 Melting

The melting due to a sudden frictional heating, that is, the ultimate mechanism of

thermal weakening, cannot be excluded from investigations despite the scarcity of sup-
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portive indications or evidence so far. If the melting occurs, it is very likely that it is

not a simple process.

7 Conclusions

In this thesis we

• summarized basic relations for stress, strain and strain energy function in an elastic

medium without and with an initial stress and strain,

• briefly characterized basic models of seismoactive fault and earthquake rupture,

• derived in detail all relations following from the application of the first law of

thermodynamics to a smooth volume without fault (fracture) surface, volume in-

tersecting fracture surface, and volume intersecting fracture surface and containing

a fracture edge,

• derived in detail all basic relations for the seismic energy,

• briefly summarized the most important dynamic-weakening mechanisms.

In the process of deriving relations for the seismic energy we found one wrong negative

sign (misprint or error?) in the important relation (4.4.21) in Kostrov and Das (1988).

We also concluded that several opposite signs on p. 153 and 154 of Kostrov and Das

(1988) are due to the inconsistent choice (by Kostrov and Das) of the normal to the

surface of the auxiliary volume Vε compared to that in the application of the first law

of thermodynamics. (Details are given in Chapter 5 of this thesis.)

8 Appendix - Selected Geological Terms

The text of this appendix is based on Foster (1985).

Rocks of the crust: igneous, metamorphic, sedimentary.

Metamorphic rocks: rocks that have been changed either in texture or mineral com-
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position by heat, pressure, traction, shear, or chemically active solutions. They can

be divided into two textural groups: foliated - having a directional or layered aspect,

non-foliated - homogeneous or massive rocks.

Types of metamorphism:

• Thermal or contact.

• Recrystallization under stress - new minerals grow in a preferred orientation; cor-

responding rocks are said to be foliated and most are gneiss and schist.

• Dynamic - breaking and grinding without much recrystallization; example - my-

lonite. Rocks are sheared, broken and ground near the surface when temperature

and pressure are too low to cause any significant recrystallization. Commonly as-

sociated with fault zones.

Rocks in a fault zone: all gradiations between metamorphic rocks and ordinary

schist; the fine-grained, ground rock in gouge is mylonite, the rocks gradiational with

schist are called semischist or cataclastic schist or gneiss.

Clastic rocks: rocks composed of rock fragments or mineral grains from any type of

preexisting rock.

Cataclasis: deformation of rock caused by fracture and rotation.

Tachylite: glassy (no crystal) mid-dark igneous rock.
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