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Predikcia seizmického pohybu na zdujmovej lokalite je jednou z najdoleZitejSich tloh
seizmoldgie zemetraseni vo vztahu k spoloc¢nosti. S vynimkou niekol’kych oblasti osidlene;j
Casti povrchu Zeme nie je na dolezitych tzemiach a lokalitich dostatok dat na zistenie
empirickych vztahov pre predikciu seizmického pohybu pocas budicich zemetraseni. Toto
implikuje  dolezitost’ a nezastupitelnost’ teoretickych metéd ametéd numerického
modelovania vo vztahu k predikcii seizmického pohybu. Presnost’ ateda aj uZitoCnost
numerickych metéd zdleZi aj od miery realistického modelu povrchovych Struktir, najméa
povrchovych sedimentdrnych Struktir, ktoré spdsobuji anomdélne zosilnenie a prediZenie
trvania seizmického pohybu na povrchu. V niektorych pripadoch vodou nasytenych
sedimentov je podmienkou realistického modelu prostredia a seizmického pohybu zahrnutie
poroelasticity. Na rozdiel od jednozlozkového kontinua (viskoelastického ¢i
elastoviskoplastického) je nutné explicitne zohl'adnit’ aj pritomnost’ pérov a kvapaliny v nich.
Takéto prostredie je pre modelovanie seizmického pohybu relativne zlozité. V tejto
bakalarskej praci sa venujeme zdkladnej fyzike poroelastického prostredia, matematicko-
fyzikdlnemu popisu (pohybovéa rovnica a konstitu¢ny vztah) a napokon priprave vypoctového
algoritmu a vypoctovej kone€no-diferencnej schémy pre numerické simuldcie Sirenia

seizmickych vin a seizmického pohybu.

KIidcové slova: poroelastické médium, Sirenie vin, seizmicky pohyb
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Earthquake prediction and prediction of ground motion during future earthquakes at a site of
interest are the most important tasks of the earthquake seismology in relation to society. With
the exception of only few populated areas on the Earth, there is a drastic lack of earthquake
recordings that could be used for empirical prediction of the earthquake ground motion. This
implies importance and irreplaceability of theoretical and numerical-modelling methods with
respect to prediction of the seismic ground motion during future earthquakes. Accuracy and
efficiency of numerical methods depends on how realistic is a computational model,
especially in case of the sediment-filled structures, which can produce anomalously amplified
or prolongated earthquake motion at the Earth’s surface. In case of water-saturated sediments
we need to adapt poroelasticity into computational model in order to make simulation of
earthquake motion more realistic. Contrary to a single-phase continuum (viscoelastic or
elastoviscoplastic) it is necessary to consider presence of fluid-filled pores. This kind of
material is for earthquake motion modelling relatively very difficult. In this bachelor thesis
we present basic concepts of physics of poroelastic medium, derivation of equation of motion
and constitutive relation, and a finite-difference scheme for numerical simulation of seismic

wave propagation and seismic motion in poroelastic medium.
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Foreword

Seismology is the solid Earth geophysical discipline with highest societal impact, both in
assessing and reducing the danger from natural hazards. It's major goal is study of
earthquakes and the propagation of elastic waves through the Earth. In particular, the seismic
waves and their analysis make it possible to investigate Earth's deep interior, where direct
observations are impossible. However, the main task of modern seismology is directly
concerned with seeking ways to reduce destructive impacts of seismic waves on human
population and predict their behavior at a site of interest.

My first experience with seismology at the university was during one-semester long
course of "Mechanics of Continuum". After one semester of studying I was captivated with
seismological theory. How it could be on one hand a difficult mathematical subject and on the
other hand able to present fascinating theoretical problems involving analysis of elastic wave
propagation in complex media. This is also the reason, why the topic of my thesis is related to
the earthquake prediction and prediction of ground motion. Elaboration of topic "Wave
propagation in poroelastic media" gave me an opportunity to become familiar with works of
one the best seismologist in field of numerical modelling of earthquake motion. It should be
noted that general porous material is an anelastic, anisotropic, multi-phase medium, with all
attributes of realistic model of the Earth material, and therefore implementation of this

rheology for numerical modelling cannot be excluded.
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1 Introduction

Wave propagation in fluid-saturated porous media is a topic of increasing interest in many
geophysical fields. Wave forms and amplitudes provide knowledge about the properties of the
material in the subsurface and can be used in earthquake engineering, geomechanics,
petroleum engineering and hydrogeology. The study of wave propagation in porous media
helps us to better understand behavior of seismic waves. The term poroelasticity was first
established by J. Geertsma in his work: "Problems of rock mechanics in petroleum production
engineering". He defines a saturated porous material as medium formed by two
interpenetrated phases. One of them is the solid phase, which constitutes the matrix of the
poroelastic material, and second one is the liquid phase, which constitutes the saturated fluid.

Two basic phenomena underlie behavior of poroelastic material:

e Solid to fluid coupling occurs when a change in applied stress produces a change in
fluid pressure or fluid mass.
¢ Fluid to solid coupling occurs when a change in fluid pressure or fluid mass produces

a change in the volume of the porous material.

Poroelastic behavior can explain an initially unexpected connection between causal event and

its subsequent effect. Here are two historical examples:

e Water Levels Change in Well as Trains Pass. F. H. King (1892) of the University of
Wisconsin reported that water levels in a well near the train station at Whitewater,
Wisconsin, went up as a train approached and went down as a train left the station.
The water level fluctuation was greater for a heavy freight train than for a lighter and
faster passenger train (Wang 2000).

e Water Levels in Boardwalk Wells Fluctuate with Ocean Tides. In 1902th United
States Geological Survey reported that water-level oscillations in wells in Atlantic
City, New Jersey, were synchronous with ocean depths, because the weight of sea

water at high tide compressed the underlying rock, thereby forcing pore water up the
wells (Wang 2000).

Our analysis of poroelastic theory and presentation of derivation of equations of motion in
poroelastic media is mainly based on books of Bourbié (1987), de la Puente (2008) and article
of Biot (1956). In dealing with problem of wave propagation in porous material for dynamic

analysis of the subsurface according to Bourbié (1987), two approaches are possible:
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e The first approach is based on homogenization procedure, which helps us to pass from
laws on microscopic scale to macroscopic ones. The microscopic laws apply here at
the scale of the heterogeneity (in our case a porosity), whereas macroscopic laws refer
to a scale related to the heterogeneous medium, which is in fact the measurement
scale.

We shall note that there are two homogenization methods. The first one is based
on averaging procedure, where microscopic problem is first resolved at the level of an
elementary cell containing an isolated heterogeneity (in our case a fluid-filled
channel). From the solution to this elementary problem, we then derive the mean value
on the cell of the quantity analyzed (stresses, strains...) as a function of the
macroscopic value imposed at the cell boundary (strains, stresses...). After this
procedure, the heterogeneous medium can be replaced by a fictitious homogenous
medium. The response of the medium to an imposed force is the mean value
previously calculated. The function linking them depends spatially on the geometric
and mechanical parameters of the heterogeneities existing in actual medium. This
method can be used for low and medium concentrations of heterogeneities, where cell-
to-cell interaction processes can be ignored.

The second homogenization method assumes the periodically repeated
microscopic heterogeneous structures. If we make a spatial period tend towards zero
with respect to the macroscopic scale (small parameter asymptotic method), the form
of the macroscopic laws can be derived.

e The second approach relies on concepts of mechanics of continuum (existence of
potential, kinetic energy and stationary principles) and deliberately ignoring the
microscopic level. This method can be straightforward applied to measurable
macroscopic values. This older approach is also presented by Biot (1956) in his work.
The porous material presented in this thesis is based on the conceptual model of a

coherent solid skeleton and a freely moving pore fluid.

In this study we will apply the second approach.

The main difference between the wave fields in a poroelastic material and those in an
elastic one is the existence of a wave of the second kind, in addition to the standard
compressional and shear waves. This wave, also called slow P wave, which behaves
diffusively at low frequencies (e.g. seismic frequencies) and propagates at a very slow speed

through the medium. This is caused by dominance of the fluid-viscosity effects over the



inertial effects. As a consequence, this wave is significant only very close to the source or
near material heterogeneities.

Analytical solutions for wave propagation problems in poroelastic media exist, but are
usually limited to extremely simple model problems. Therefore, many studies consider the
numerical solution of Biot's equations. The finite-difference method has been one of the early

methods applied for this purpose in two dimensions and three dimensions.

1.1 Assumptions

e The first assumption states that the wavelength is significantly larger than largest
dimension of the pores. This assumption is normally always satisfied in geophysical
applications.

e The second assumption demands small fluid and solid displacements. This assumption

is fully justified, because the strains in seismic studies (laboratory or field) are less

than 107°.

e The third assumption requires the liquid and solid phases to be continuous.

e The fourth assumption concerns the matrix (frame) which is in this case elastic and
isotropic, but it should be noted that the theory can be extended to the anisotropic
elastic case.

e The fifth deals with distribution of individual phases in porous media. We assume, that
all pores are interconnected (completely filled by fluid represented as continuum, so

that v, is also the volume of void space). In fact (Bourbi¢ 1987), every natural porous

medium possesses both types of porosity (disconnected and connected), so that the
liquid that participates in the motion of the slow wave is merely the fraction of liquid
contained in the connected porosity. It is important to realize that the coarse image by
which one considers that, among the two compressional waves, one moves within the
liquid and second in the solid, is false. In fact, the porous medium is a material
constituted of solid and liquid phase coupled together. A more accurate image can be
represented by sample as a system of two springs with eigen vibrations in of phase and
out of phase.

e The final one concerns the absence of thermo-mechanical and chemical effects.

To describe the mechanics of the poroelastic material, we must define two fluid

m

equivalents to the solid matrix stresses O'Z? and strains £

which are the fluid's pressure p
and the fluid strains 8{; . Strains tensors for fluid and solid can be subsequently expressed as

4



e = L(ou,/ax; + ou;/ax,) and & = %(aU,./axj + U, /9x,), where u; and U,

1
ij >

is solid and fluid displacement. Together they form w; = ¢ (U ;U i) , which is displacement

vector of fluid relative to that of the solid. It is also convenient to establish relation for density

of bulk as p = (1-¢)p, + ¢ p,. A poroelastic material can be described using measurable

quantities from solid, fluid and matrix (frame), where matrix corresponds to skeleton part of

material (poroelastic material without fluid). These quantities are denoted by letters s, m, u

respectively S, M, U and summarized as follows:

e Solid
P s -

T .

density of solid phase
bulk modulus of solid phase

Lame's elastic coefficient

density of fluid phase

bulk modulus of fluid phase
viscosity
pore pressure

variation of fluid content (the increment of fluid volume per unit volume of

solid)

drained bulk modulus (bulk modulus of matrix)
drained Lame's coefficient

matrix's shear modulus

porosity

permeability

tortuosity

o Parameters of solid/fluid interaction

Ky -

undrained bulk modulus

Biot's modulus
Biot-Willis's effective stress coefficient

material constants for fluid/solid interaction



B - Skempton's coefficient

Most of these quantities are well known from fundamental physics and elastic mechanics,
except tortuosity, porosity and permeability. The tortuosity 7 is related to the ratio between
the minimum (straight) and actual distance between two points of the pore space, due to the

"tortuous" path of the pore connection. The porosity ¢ is defined as a ratio Vp /VT , where
Vp is the volume that takes the pore space (in our case of full saturation V, = V) and
Vy = Vg + V is the total volume of the material. The permeability « is a measure of the

ability of porous material to transmit fluids. Other quantities will be defined subsequently in

text.

2 Undrained, drained and unjacketed conditions

In this section we will discuss conditions that can be porous media exposed to, presented by
Detournay (1993), de la Puente (2008) and according to website www.environment.uwe.ac.uk
(2003). These conditions, specifically tests that can be carried out and characterize individual
conditions are used to determine some of the fundamental coefficients, which are then
employed in calculus. Three types of tests are usually executed to determine the poroelastic

parameters:

ext

e the drained test where the confining pressure p~" is applied and pore pressure p

remains constant
e the unjacketed test characterized by an equal increase of the confining pressure p *'

and pore pressure p

e the undrained test where a confining pressure p*' is applied on the rock, but no fluid

is allowed to enter or leave the core sample.

All these tests can be carried out in laboratory to measure mentioned parameters. An
apparatus can be schematically described as pressure vessel with jacketed core of rock placed
between two endcaps. Confining pressure can be applied hydraulically.

Pressure vessel's endcaps are either designed with drainage holes, in order to control of
the pore pressure during exchange of fluid with the sample for the drained test, or solid for the
undrained test. Note that the increments of pressure used in these experiments are typically of

order of a few MPa .



2.1 Drained conditions

Drained conditions correspond to deformation at sufficiently slow rate, at fixed hydrostatic

pressure p X

, with the fluid being allowed to flow in or out of the deforming element
however is required to keep pore pressure p constant. The state of constant pore pressure can
be reached by inserting a tube into the rock and connecting it to a fluid reservoir at the same
pressure. The parameter K, can be obtained by measuring the volumetric strain due to
changes in applied stress while holding pore pressure constant. In this case, all the external
pressure is transmitted to the frame, and therefore one can define the drained bulk modulus of
the matrix as K,, = — p™ / £, - Situation describing drained conditions is pictured in
Figure 2.1a). The representative elementary volume of porous material under drained

conditions is pictured in Figure 2.1b).

Pressure
PE /
P , Fluid

Dry frame
v Time - (empty pores) Ke.p .1
K,\f[
Yo
T&V
Solid
e K:.p,,G

Figure 2.1a) Time dependence of Figure 2.1b) The representative

pressure and volume under drained elementary volume of porous

conditions. material under drained conditions.

2.2 Undrained conditions

The opposite limit is undrained deformation occurring at the time scale that is too short, so the
fluid is not allowed to flow in or out during deformation and, in general, changes of pore
pressure p are induced. This means ¢ = 0. After some period of time consolidation will
occur, which is dissipation of excess pore pressure, accompanied by volume change after
opening endcaps. The rate of consolidation is dependent on the permeability of the solid phase
and size of the consolidating layer. Transient undrained conditions prevail during
consolidation, but eventually, when all of the excess pore pressure has been dissipated,

conditions are the same as those for drained case. Two measurements can be made: the

volumetric change AV and confining pressure change Ap®' for the determination of



undrained modulus K, = VAp™ /AV and the pore pressure change Ap for B

(B = Ap/ Ap ), which is Skempton's coefficient. Situation describing drained conditions is

pictured in Figure 2.2a). The representative elementary volume of porous material under

undrained conditions is pictured in Figure 2.2b).

alg=A0 g
P N Undry frame Fluid
Y tirme’ _ (full pores) Kz, p. .M
o Ky ’
2 :E: 7 x N Solid
undrdined i consalidation time” Ks.p,.G
Figure 2.2a) Time dependence of Figure 2.2b) The representative
pressure and volume under undrained elementary volume of porous material
conditions. under undrained conditions.

2.3 Unjacketed conditions

It is related to the case when the increase in confining pressure is equal to the increase in pore
fluid pressure. This test can be carried out by immersing whole poroelastic sample in fluid so

the pressure p is applied. This pressure will distribute itself among the 1—¢ part of the frame

and the ¢ fluid part of the surface of the material. From this experiment we will obtain two

relations K¢ = — p / g, and Kp = — p/ 8,56 which we will be subsequently used in the

next chapter.

3 Constitutive equations

In this chapter we will present derivation of constitutive equations for poroelastic media
following work of de la Puente (2008). The most general form of the constitutive equation for
a fluid-filled porous material, is given by

2
ol = Qe,{k J; + (K—ngg,’Z}C d; +2G¢g; A

Q
\
[

Re,{k + Qe



where 6/ =—¢ p. This relation is called partial stress formulation. The first equation of (3.1)

for stress in terms of strain and pore pressure may be inverted to solve for strain, leading to:

m L m 1 1

€5 = 56% 9(K—Q2/R)_6G

0y oL (3.2)

Parameter G can be easy obtained by subjecting the material described in (3.1) to a pure

shear deformation, so that 83-1 = 85 =0 for i=j . It can then be shown, that

O'gi = 2G€;}1 , so the parameter G responds to matrix’s shear modulus G = u,, . For
identifying parameters K, O, R we will use conditions described in chapter 2.
Using (3.1) under the drained conditions one can obtain:
-p™ = Kep 5, + Qe 3, .
= Q&) + Rel, .

After applying K,, = — p* / £, one can obtain a relation between K,, and the still

unknown poroelastic parameters K, Q and R.

2
Ky, =K - % (3.4)

After carrying out unjacketed experiment we mentioned earlier, equation (3.1) becomes:
~(1-9)p = Kej 6 + Qefy 6 s
~¢p =Qe + Re],

We can see that the pressure is acting from the inside of the porous rock, and therefore the

compressional properties deduced from the experiment are those of the rock or solid instead

of those of matrix. One can use K¢ = — p / ey, and Kp = — p/ 8I{k introduced earlier to

obtain further set of constraints on the unknown parameters K, Q and R as follows

1_¢:£+£
Ky, K 56
F S

which combined with (3.5), builds up a system of three equations and unknown parameters

which can be solved as follows:



(1-9¢)(1-¢ _KM/KS)KS +9Kg Ky /Ky

I—p—Ky /Ks+9Ks/Kp
¢(1—¢—KM/KS)KS
I—¢— Ky /Ks+0Ks /Ky
¢°K
1-¢- Ky /[Kg+¢Kg/Kp

R =

(3.7

Using relations above, we can introduce some new parameters and following relations can be

found
K=M (a-9)° + K,
Q =M¢(a-9¢)
R =M¢?
B :%
K, +a*M

Ky = Ky +a*M

where the fluid-solid coupling Biot's modulus M is denoted as:
K
M = S
and the effective Biot-Willis's stress coefficient ¢ has this form:

#(@Q+R) | Ku

R Ky

From equations (3.9, 3.10, 3.11) one can obtain:

Y [ELL S U U S
Ks K K
KU _ N F N
[P B R I 8
Ky |Ks Kp) Kg|Kg

(3.8)

(3.9

(3.10)

(3.11)

(3.12)

(3.13)

Note that (3.11, 3.12, 3.13) are quite compatible with limit cases. For solid medium

corresponding to @ = ¢ = 0, the expected values K,; = K; = Kg and M — o are

obtained. For fluid medium corresponding to & = ¢ =1, we obtain K,, = 0 and

KF:KU:M-

10



After defining new constants, we can express relation (3.1) as:
o =|(a-9)’ Mel +(a-o)M ozl ]5; +
(KM —%Gjé‘ljel’z,i + 2G€g1 (3.14)
ol = (a-9)M e + M ¢*el,

First expression of (3.14) can be further simplified by adapting elastic tensor from Hooke's

law, which has form:
m 2
SO one can obtain:

o [(a—qﬁ)zM ey + (a—o)M ¢815<J5ij + Ciig €y

(3.16)

o’ (a—9) Mg + M¢2 6‘]5(

ff .
Where 0 2 = cij"-}d €}, can be denoted as effective stress.
Now we can express equations (3.16) in terms of the variation of fluid content

thus obtaining

¢ =- (8,56 —8,':;{) and the total stress 0; = O'Z? + Gf§ij,

_ eff
O-ij = O-ij

p = M(g—ae;{’}{)

-—ap 51’]’
(3.17)

which is final form of the poroelastic constitutive laws for isotropic case.
Relation (3.17) can be modified using w, where w can be expressed by means of

variation of fluid content ¢ = —d; w;, which then gives:

1

2
where K, —% G is equal to drained Lame's coefficient 4, .

Partial summary: Relation (3.17) represents isotropic constitutive equations for porous media.

4 Equation of motion

To obtain equation of motion we must at first define density of kinetic and potential energy
together with dissipation energy, which afterwards insert into the Lagrangian equation,
following work of Bourbié (1987).

11



4.1 Dissipation

Processes of dissipation in this chapter are assumed to result only from the relative movement

of solid and fluid. In the neighborhood of equilibrium, vector w; and the dissipative force X ;

are linked by a linear equation such as:
Wi =by' X, (4.1)
Based on (4.1), a dissipation pseudo-potential ) can be introduced, which is a positive

definite quadratic form of representative matrix b, such that:

ij°

i

1. .
For isotropic porous material the off-diagonal elements in the b;; tensor are zero for i # j and

the diagonal elements are identical, so the common form is obtained:

1 2

We can present derivation of classic Darcy's law (in steady-state conditions) from Navier-

Stokes microscopic equations for fluid of viscosity 77, by making an analogy with Poiseuille's

law. This gives rise to the expression of the hydraulic permeability in the form

p=21 (4.4)
K
where x, the absolute permeability, depends only on geometry of the porous media.
Considering flow with at sufficiently low velocity we can write Darcy's law as:

x, =1y, 4.5)
K

4.2 Kinetic energy

The kinetic energy C of the system per unit volume may be expressed as:

du; du, du; ow; ow; dw;

2C = + 2 — +
Pu ot ot P ot dt Pw ot OJt

(4.6)

This expression is based on the assumption that the material statistically isotropic. The
specific case when the relative movement between fluid and solid is completely prevented in

some way (i.e.w; = 0), serves to identify p, in equation (4.6) as:

Pu =P = (1_¢)ps + ¢pf (47)
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The terms p,, and p, will be identified subsequently. Moreover, after defining new
parameters p,, in chapter "Propagation of P and S wave" we will be able to rewrite (4.6) in

these terms as
du; du; oU. dU
C = l(l—¢)p i i 1 i i

> o1 o1 T2%P7 91 o
1 oU; Odu; \(oU; Odu;
Eplz ot ot ot ot

where kinetic energy is now expressed as the sum of the kinetic energy density of the solid,

4.8)

kinetic energy density of the fluid and the kinetic energy density due to the relative motion of

an additional apparent fluid mass arising from the inertial drag of the fluid.

4.3 Potential energy

If we assume only small disturbances, the expression of U can be limited to the quadratic

terms. The assumptions of isotropy implies that this expression involves the first two

m

jj » as well variation of fluid content ¢ . One can therefore

invariants of strain tensor ¢}, and &
write:
_ 2 m .m m .m m 2
2U—(/1M+a M)ekkekk +2Ge ¢ —2aMeyg ¢+ Mg 4.9)

For o = ¢ = 0, the single-phase case can be obtained.

4.4 Hamilton's principle

The dynamic behavior of homogenous system in space, including continua, can be specified
by a single function, a Lagrangian density £, which is a function of, say, n local dependent

variables ¢y, q,,...... g, and their first derivatives ¢,,q,; . Generally there is no direct
dependence of L on the independent variables x i and 7; there is only an indirect dependence
since ¢;,q;,q; ; are functions of 7 and x,. In our case we have to add component
responsible for dissipative potential ) depending on ¢; .

Hamilton's principle (for example see Achenbach 1975) states that of all paths of motion

between two instants #; and 7, , the actual path taken by the system is such that integral over

time and space of the Lagrangian density £ and of the work of the dissipated forces is
stationary.

If we use Lagrangian equation

13



d 9L d dL oL aD
+ +

—— - — =0 (4.10)
ot 9¢; axj 8ql—’j 9q,; 94,
where ¢; = u; or w; in our case. The application of (4.10) by using expressions (4.3), (4.6)
and (4.9) for isotropic case, leads to equation of motion:
Oiij = Y Mz + Puw Wz
" ) ) | (4.11)
_p,i = puw u; + pw wi + bwi

Relation (4.11) represents equations of motion. To identify still unknown parameters p,,,, and
p,, We can use several assumptions.
If there is no relative fluid movement with respect to the solid movement (i.e. w; = 0),

the first equation is reduced to the equation of movement in solid, while the second is reduced

to the equation of movement of a fluid, thus p,, = p,. Now if the fluid is the rest

(wi =—-9 ui) , the second equation is reduced to:

—pi = (ps-pyo)ii. - bi, @.12)

This shows that, if overall acceleration occurs, a force must be exerted on the fluid to prevent

average displacement. For its inertial part, this coupling force is:
(0 =P 9)ii (4.13)

To describe this coupling effect, similar to the mass effect added in the analysis of the

movement of an obstacle in a fluid, it is usual to establish parameter tortuosity 7', such that:

T
L=p (4.14)
Y ¢Pf

The tortuosity 7 was introduced in chapter one and it is related not only to porosity but also
to the geometry of the medium where the flow occurs. If 7" tends toward 1 as ¢ tends towards

1, the medium will be reduced to a fluid. We have to point out, that the way in which this

limiting case is reached does not only depend upon the way ¢ tends towards 1, but especially

upon the geometry of the porous medium. The tortuosity is determined by Berryman's (1980)

method using
T =1-r(1-1/9) (4.15)

where r is a factor to be evaluated from a microscopic model of the geometry of the frame.
. . . 1
For the case of solid spherical grains r = 3

Equations (4.11) are thus written as:
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i =p U+ prw
T . . (4.16)
—p,; = Pyl + Epf Wi + bw;

Relations for pore pressure p and total stress oj; in equation (4.17) are from chapter three
denoted as:

o, = cZ.’kl £y — apo; win

p = M(g—ae,’j}()

Make a partial summary: Equations of motion (4.17) and constitutive equations (4.18)

describe isotropic poroelastic wave propagation at low frequencies.

S Propagation of S and P wave

In this chapter we will analyze wave propagation of S and P waves following works of Biot
(1956) and Bourbié (1987), using equations of motion (4.16).

The introduction of the equations of stresses as a function of displacement y;, a U ; in

equation (4.16) yields the equations of motion in the form:

(/1+2G)ajalul + )ﬂa]alUl - GSijk ajgklmal u, = pll’;ii

) o (5.1)
+ ppU; + ,B(ui _Ui)
Yo o;u; + RO;0,U; = pyii; + ppU; — B(i;-U;) (5.2)
in which we noted:
Ao = Ay + M(a—¢)
Y o= Mop(a-9)
R = M¢?
P =P - 9py (2-T) (5.3)
Pio = op;(1-T)
P = opyT
2
g = no

K
Note that (5.1, 5.2) can be written for the limit cases of the perfect fluid and the solid. In fact,

if the medium is a perfect fluid, the set of parameters to be considered is ¢ = o =T =1
and G = B =0 (k - o, n = 0). Equation (5.1) disappears and equation (5.2) gives the

dynamic equation of perfect fluid under the assumption of small displacement:
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Majalulzpr, (5'4)
It should be noted that equation (5.1) disappear naturally and not by assuming U; = u;.

1

Now, if  the medium consists only of solid phase, letting
a=¢ =0 4, =4, T — o,Eq.(5.2) then gives
0=-Topii; + Topp,U; — Blu;-U,) (5.5)
while equation (5.1) gives:

(A+2G)0;0;u; = Gy 0 €y Oy — Py il =T P py i
~Top;U; + ﬂ(”i_Ui)

Equation (5.6) is clearly the equation of the dynamics of elastic solids, since the second

(5.6)

member is cancelled owing to (5.5).

5.1.1 Existence of S wave
Let us first examine the case without dissipation (£ = 0) for the shear wave (S wave) or

isovolumetric wave (a,- u; =09;U; = 0) such that:

1
) 5.7
Equation (5.7) introduced into (5.1, 5.2) becomes
{ 1oy
(5.8)
_ P12 A} _ Alz
P2
where velocity V; is given by:
1
2
V, = G 5 (5.9)
P12
I
P2

Since the fluid does not respond to the shear forces, it only influences the shear wave through

inertial effects.
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5.1.2 Existence of P waves
Now let us examine the dilatational waves without dissipation (f# = 0) and such that:

U;

=0, 0
(5.10)

These waves correspond to dilatational waves (P waves) that are irrotational
(Sijk 0 Eim O Uy = Ejg 0 Eggpy 0, U,y = 0) . By introducing (5.10) in (5.1, 5.2) with

(B = 0), the following equations are obtained:

(A+42G)9;0,®" + Y9,;0,®> - p;; &' - p,d*> =0
. . (5.11)
Y0,0;® + R0;0,®> - p, &' - pp®* =0
It is convenient to establish reference velocity V,, defined by
V,g _ A+2G+R+2Y (5.12)
p
where
Velocity Vj, represents dilatational wave in (5.11) under the condition u; = U, . It is
convenient introduce non-dimensional parameters:
_ P ) _ P2
Yiu = — Y22 = —» Yi2 = ——
p p (5.14)
A+2G R
O = » V22 = 0 =
A+2G+R+2Y A+2G+R+2Y A+2G+R+2Y

The 6 ;; -parameters define the elastic properties of the material while the v; -parameters

define its dynamic properties. It can be shown that (5.14) parameters satisfy following
identity:
Yir + 2¥i2 ¥ =0 + 20 + 0y =1 (5.15)

With these parameters equation (5.11) becomes:

1 92

b ) (5.16)
1 2 1 9 2

Vot

Solutions of these equations can be written in the form:
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' = @ exp[i(kx+ot)]

(5.17)
O = D, epr:i(k X+ 0 t):'
The velocity V of these waves can be expressed as:
®
V =— 5.18
. (5.18)
After substituting expressions (5.17) into (5.16) and denoting parameter z as
V2
z = V—’; (5.19)
we will obtain:
Z(euq’lo + 912(1)20) = Y11 P + Y12 Py (5.20)
Z(912 Dy + 02 q)zo) = VY12 P + v22 Py
Eliminating @, and @, yields an equation for z:
2\,2
(911922 - e12)Z - (911922 +0n v — 20p 712)1 +
(5.21)

(Y11Y22 - Y122) =0

This equation has two roots z, z, corresponding to two velocities of propagation V;,V,

v 2
7]

(5.22)
\&
V)= —
Zy

There are therefore two dilatational waves. The roots z;, z, are always positive, since the

matrices of coefficients 7,8 of equations (5.20) are symmetric and are associated with

positive definite quadratic forms representing respectively the potential and kinetic energies.
For more detailed analysis (Biot 1956), it can be shown that one of the characteristic
movements corresponds to a movement in which solid and fluid displacements are in phase,
and the second to a movement in which the displacements are out of phase. The wave that
corresponds to the relative movement case is known as the slow wave or the wave of the

second kind. This terminology derives from the fact that the associated velocity V; is much
lower than the velocity V, of the in-phase movement wave called wave of the first kind. Wave

with velocity V, corresponds to classic P-wave, which can be noticed in the absence of fluid

(Bourbié 1987).
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5.1.3 Wave velocities and attenuations

As in the case of no attenuation, we may separate the equations (5.1) and (5.2) into rotational

and dilatational waves, but first we must introduce characteristic frequency, denoted as:

F= B (5.23)
271P(Y12 + Yzz)

Applying the divergence operator to (5.1, 5.2) we have the equations for dilatational waves:

3,9;|(r+2p)@' +1® | = %(plld)leplzCI)z) + ﬁ%(qnl—qﬂ)

5 (5.24)
1 2] _ 0 1 2 J 1 2
9,9, Yo +Rq>}_¥(p12q> +p22®)—ﬁa(<b - o?)
Likewise, applying the curl operator, we will find the equation for rotational waves:
9° 1 2 d (1,2 1
W(Pn/\i"‘PnAi) + :Ba(Ai_Ai) = GaiajAj
52 5 (5.25)
1 2 1 2
W(Pu Ai+py Ai) - ﬁa(/\i _Ai) =0

Let us first examine a rotational plane wave propagating in the x-direction, then solutions of

equations (5.25) are written in the form:

All- = Alexpl:i(kx+0)t)] (5.26)
A? = A?expli(kx+ot)] '

Substitution in equations (5.26) and elimination of the constants Al and A? yield the relation

G k?

po’

with

ERe =

+ v
(
2 2
14+ Y22 e
Yiot+t7Y2 fe

(5.28)
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the frequency of the wave is f = ® /2n. Assuming, that k is complex
k = kg + iky, (5.29)

indicates, that phase velocity of rotational wave has form:

v, = — (5.30)
‘ kRe
We can establish a reference velocity
1
2
Vv, = (%] (5.31)

which is the velocity of rotational waves, if there is no relative motion between fluid and
solid. We derive from (5.27) using (5.28), (5.29), (5.30), that:

2
-t = V2 1 (5.32)
v, T

[\/ (ERe + Emy) + ERG}Z

This velocity ratio is a function only of the frequency ratio f / f. and the dynamic parameter

Vi From relation (5.29) it is evident, that k; is attenuation coefficient of the rotational wave.

We can introduce a reference length

VI‘
L, = (5.33)
27 f,

Introducing (5.28), (5.29), (5.33) into (5.27), one can obtain:

1
f [\/ (EZRe + Elzm) - ERe}2

Ky, = — 5.34
Im fc \/ELr ( )

Using (5.29) and (5.26) can be shown that the amplitude of the wave as a function of the

distance x is proportional to exp (- k,, x) while the real part is related to the phase velocity

v, as we have shown earlier.

We now consider P-waves. They are governed by equation (5.24). Again we consider

plane waves and express solutions of (5.2) as:

o' = @ gexpli(kx+ot)] 535
o? = d)zoexpl:i(kx+cot)] '

Introducing the solution (5.35) into the propagation equations (5.24) and eliminating the
constants @, and ®,, we obtain
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4 2
[(mzu)—rﬂ% - [RP11+(7~+2M)922—2YP12]%

(5.36)
, if k2
+ PiiP2 ~ Pi2 "‘; [(X‘FZH)"‘R"‘ZY’]?—P 0

With the variables already presented in (5.14) this equation may be written in non-

dimensional form

(911922—9122)Z2 - (922 Vi1 +011722-20p le)z +

. (5.37)
2 ip _
+ (YnYzz—Yu) + m_p(z_l) =0
with
K2
z=—Vj (5.38)
(V)

In this case k is complex and therefore z is also complex. If we put f = 0 in equation

(5.36) we obtain (5.21) whose roots are z,, z,. With these roots (5.37) might be rewritten as

(z—zl)(z—zz) +iM(z-1) =0 (5.39)
where

M = B
COP(en 02 —9122)

The roots of equation (5.39) yield the properties of the dilatational waves as a function of a

(5.40)

frequency variable M and two parameters z;, z, which correspond to the velocities of the P
waves without attenuation, as given by equation (5.22). We may rewrite M in terms of f / fe

as:

M = & (Y12+Y22) (5.41)

F (01105 -03)

Variables z; and z;; denotes the roots of relation (5.41). Root z; corresponds to waves of
the first kind while zy; corresponds to waves of the second kind. Following equations can be

obtained:

—_
N

—

N —
N | =
|

1
(ZH)5 =Ny +iJy
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The phase velocity v; of the waves of the first kind is given by:

\4 1
— = — (5.43)
Vo ||
Attenuation coefficient of the wave of the first kind is given by
J
in{ke} = ol s (5.44)
Lo fe
where L is a characteristic distance given by:
v
L, = —2 (5.45)
2r f,
The phase velocity and attenuation of the wave of the second kind similarly become:
v 1
maUgeN (5.46)
Vo ||
J
Im{ky} = 3ul s (5.47)
LC fC

Partial summary: We have shown by presenting work of Biot (1956) in this chapter, that there
are two P waves and one S wave propagating through poroelastic media in contrast of elastic
one, where only one P wave and one S wave are induced. Moreover, we were able to present

derivation of velocities for these waves, together with attenuation coefficients.

6 Seismic prospection

In this chapter we will focus our attention on seismic prospection, following and presenting
work of de la Puente (2008). Method of seismic prospection uses waves at low- and high-
frequencies ranges. The limit between high- and low-frequency ranges is defined by Biot's
characteristic frequency:

g = min| 19 6.1)

Tkpy

Equations of motion derived in chapter four are only valid at low frequencies (e.g. seismic
frequencies), where fluid flow in pores is laminar (Poiseuille flow) and b is given by (4.4).

Physically, at low frequencies f < f Biot's theory states that the wave of second kind

becomes extremely dissipative. For homogenous media the wave types propagating in a
poroelastic material at low-frequencies are almost indistinguishable from those in a single-

phase medium properly attenuated. Low-frequency case has been already discussed in
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previous chapters five and four, therefore we will only focus on high-frequency range seismic
prospection. For high frequencies it is required to introduce viscodynamic operator. This
problem will be analyzed in section 6.2, but at first we will introduce anisotropy into

constitutive equations (3.17) in section 6.1.

6.1 Anisotropy

At first we must introduce p = M (¢ -« 8,'3() into first equation of (3.17). Now, constitutive

equation (3.17) can be extended to general anisotropic case, written in matrix-vector form as

where
O-l = (O-Xx’ O-yyy O-ZZ’ O-yzy O-.XZ’ O-Xy’ _p) (6.3)
8] = (gxx7 gyyy gZZ’ gyzy S.XZ’ gxy, _g) (6'4)
and

Cly €y Cy3 €y Oy e Ma
Cl3 €y €3 €y C35 C3 Mo
ij Cly  Cy  C3  Cy  Cys Ci May 6.5
Cls €5 C3 €45 Css Csg  Mas
Clg € 3% €y Cs6  Ce Mg
Moy, Ma, Moa; Mo, Mas; Mas, M

i = ci + Ma; a;, which are called components of the

Entries of the matrix (6.5) are Cij i

undrained stiffness tensor. Undrained stiffness tensor composes of cl-'j’-1 the components of the

elastic Hooke's tensor of the solid matrix, ¢; the generalized Biot-Willis's effective stress

coefficients and M the Biot's modulus. Parameters «; and M are denoted as:
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o =1- (C11+012 +cl3)/(3KS)
o, =1 - (c12 +Co +cz3)/(3KS)

oy =1 - (c13 +Co3 +c33)/(3KS)

ay = - (cutca+es)/(3Ks)
as = = (c1s+cas+ess)/(3Ks)
ay = - (c15+ca+cs)/(3Ks)
M = Ks

(1- K/Ks)-0(1-Ks/Kp)
(6.6)
K = é[cll+622+c33+2(C12 +c3 +c23)}

Derivation of relation (6.6) are presented in Appendix A.

6.2 Wave propagation at high frequencies

As we mentioned earlier equation of motion (4.17) won't be valid anymore for high
frequencies. It is necessary to introduce viscodynamic operator in term involving b . A

general high-frequency viscodynamic operator can be defined in the anisotropic case as

_ P

¥, (1) d(t) + b;(1) (6.7)

where parameter k; is anisotropic permeability, 7; is anisotropic tortuosity of the solid matrix

in the principal directions and b; (¢) is dissipation operator. Unfortunately the viscodynamic
operator (6.7) is very sensitive to the pore structure and therefore frequency dependence for
each material must be analyzed separately. A way around this problem is substituting the

convolutional products by a Generalized Maxwell Body. Thus, a phenomenological

attenuating law can be used fitted to the experimentally observed wave dispersion for a given

material in the high frequency range (de la Puente 2008). Dissipation operator b; () can be

expressed by relaxation function )((i) (t) for GMB in the following manner
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bi(1) = LA () () = T -

n
K; ~

=1

Y,(i)(1 - e“"”)]H(t) 6.8)

Equations (4.17) then can be written as:

O;: = pU; + prw;
v ’ s (6.9)
-p; = pri; + ¥ixw;
where * denotes convolutional product in time.
Introducing (6.7) and (6.8) into (6.9), one can obtain:
T. (6.10)
—p; = pPyi; + i v + by (1)

We present series of properties for the Dirac's delta function &(¢) and Heaviside function

H (1), which can be summarized as follows:

Property 1: f()=8(r) = f(7)
Property 2: E)I;It(t) = 6(1)
Property 3: f(r)é(r) = £(0)d(r)

Property 4: Ijo fla)H(t—a) = Jt f(a)da
dg(r)) _ (as(1)
Property 5: p)¥| —= | = | ——= |*g(t
perty f(t) [ = 5 s
Using properties 1-5 second equation (6.10) can be rewritten into form:

dp dit N psT; 0w, n

+ W, —

(6.11)

It is convenient to introduce a set of anelastic-dynamic variables in vector form

~ T
8! = (ﬁxl, ﬂyl, 1921) as:
' = a [wi(r)e ™) ar (6.12)

This leaves the dynamic equations as:
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ap _ ou " pf i OW; + n Wi _ LZ Yl(l) zjll.l (613)

For anelastic variables we have equation:

J

Ez}f (1) + o, () B! (1) = @, W, (1) (6.14)
It should be noted, that the Fourier transform of (6.7) collapses for @ — 0 into:
T.
¥, = Py ~5(1) + iH(t) (6.15)
¢ Ki

After adapting this relation to (6.9) and using series of properties 1, 2 and 5 we will obtain:

I n . (6.16)
—P,i = Pru; t Epf wp + Zwi
If we use isotropic permeability x and isotropic tortuosity 7" instead of anisotropic ones,
relation (6.16) becomes the same as (4.17). Thus operator (6.7) is consistent also for the low-

frequency case. In addition, operator (6.15) is identical to (6.7) for any frequency, in the
inviscid case (7 = 0).

Combining together equations (6.14), (6.11), (6.2) and first equation of (6.9) provides
governing equations for wave propagation in porous media as an inhomogeneous linear

hyperbolic system of n, = 13 + 3 n first-order partial differential equations that can be

expressed in the matrix-vector form

90, - 90, - 90, . 29,

+A,,— +B,,— +
ot PCIax PQay PQaZ

=E,, 0, (6.17)

where p, g € (1,---,13) denote the elastic part and p, g € (14,-~-,n ), denote the

anelastic part of the system. Note, that classical tensor notation is used in equation (6.17),
which implies summation over each index that appears twice. The vector O, containing 13

poroelastic variables and 3n anelastic-viscodynamic variables, and space-dependent Jacobian

matrices le 7 B C E_ are explicitly given as

pa’ ~pq> “pq
0 = (O'M, Oyys Ouzs Oxyy Oygs Oypy Py Uy, Uy, Uyy Wiy Wy, W,

(6.18)
1 1 1
g, 9, o o L o)

~ A 0 ~ B 0 ~ c 0
qu:Aa O’qu:B O,Cpqz c oo (6.19)
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n,xXn .. . .
where A,., B, C,, € R™™™ containing matrices A, B, C € R"*!® responsible for

poroelastic part, and A,, B,, C, € R3*13 responsible for anelastic part. Matrices

A, B, C, A,, B,, C, have form

o 00 O 0 O el Cle ¢l 0 Mg 00
O 00 O 0 O s %% Chs 0 Ma, 00
O 00 O 0 O c{g c'gﬁ 0'3‘5 0 Mo 00
O 00 O o0 O c{% cg6 (:'5‘6 0 Mo, 00
o 00 O 0 O Cla Cl6 Cys 0 Ma, 00
o 00 O 0 O cls Csg Css 0 Mo 0 0
(1)
% 00 O 0 O 0 0 0 ’Bx(l) 0 00
Px Px
A=—- 0 00 L 0o o0 0 0 0 0 0 00
p(l)
y
O 00 0 O . 0 0 0 0 0 00
p(l)
z
0o 00 0 O 0 -Ma -Mo, —Mas 0 -M 0 0
1 /3(2)
— 00 0 0 ©O0 0 0 0 — 0 00
(2) (2) (6.20)
Px Px
00 L 0 O 0 0 0 0 0 00
p(z)
y
O 00 0 O L 0 0 0 0 0 00
p(z)
Zz
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oSO O o o o o
oSO O o o o o
o o o o o o
oSO O o o o o
o o o o o o

v/—\‘b—‘
—

B}

oSO O o o o O
o o o o o o

u
C1s

u
Cos
€35
Cs6

u
Cys
Css

0

C{‘z C1u4 0 Ma, 0

¢y Chy 0 Ma, 0

Chs cy 0 Ma; 0

[ Cle 0 Mag 0

cg4 CZ4 0 May, O

Cgs CZS 0 Mas O

0 0 0 0
1)

0 0 % 0 0 0
p)7

0 0 0 O 0 0

-Moay -Maxy, 0 O -M O

0 0 0 O 0 0 6.21)
(2)
0 0 % 0 0 0
p)7
0 0 0 O 0 0
C{l4 ci’3 0 00 Ma
c'é4 65’3 0 00 Ma,
cay 33 0 0 0 Ma
Cio 36 0 0 0 Ma
Cas 4 0 00 Ma,
CZS Céls 0 0 0 Mas
0 0 0 0
0 0 0 0
(1)
0 0 p: 00 0
p!

-May, -Moes 0 0 0 -M
0 0 0O 00 0 6.22)
0 0 0O 00 0

(2)
0 0 /3— 00 0
P



A, =| |, B, =] ] ¢, =] (6.23)

where entries p(l), pi(z), ,B(l), ﬁ.(z) of matrices A, B, C has form:

i i i

p = p—op 1. BY =g,
(6.24)
PP = p, =T p/p. BY = p/p,

Matrices A,, B,, C, contain sub-matrices A;, B;, C; € R3X13, with I = 1,...,n, in the

form

A, =w,/0 000000O0O0OO0O O 0O (6.25)

)
)
)
)
)
o
=)
=)
o
o
=)
)
)

B, =w0,/0 00 000 O0O0O0O0O0O-1020 (6.26)

=)
=)
=)
)
)
)
)
)
)
)
)
)
)

¢, =00 0 0 O0O0O0O0O0O0OO0OO0OO0O O (6.27)
00 0O0O0OO0OO0OO0OO0OO0OO0OO0 -1

where @, is the relaxation frequency of the /-th mechanism.
The reaction source in (6.17), which couples the anelastic functions to the original elastic

system can be represented by matrix E in the form

. (E E
E = ( i w] e R™*™ (6.28)
E E

where E € R"3*13 has a structure:
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000O0O0O0OO0OO0O 00 0 0 0
000O00O0O0OO0O0 0 0 0
00000O0O0OO0O0 0 0 0
000O00O0O0O0O0O0 0 0 0
0000O0O0OO0OO0O00O0 0 0 0
0000O0OO0OO0OTO0O 00O 0 0 0
(1),
0000000000'[);’1‘) 0 0
prx
1,
0000O0O0OO0OO OGO OO0 0 Py 0
o0
E = y Yy
M,
000O0O0O0OO0OO OGO 0O 0 0 ﬂ(j)
pZKZ
000O00O0O0OO0O0 0 0 0
ﬂ(2)
0000000000 =% 0 0
P &,
50 (6.29)
000O0O0O0OO0OO0O 00O 0 (XZ) 0
p)”()
2,
0000O0O0OO0OO0O 0O 0 0 ﬂé)
pZKZ
The matrix E” from relation (6.28) has the block structure
E = (E,.. E)e R3" (6.30)

where each matrix E,' € R13X3, with [ = 1,...,n, contains the elastic-dynamic coefficients

Y, l(i) of the /-th mechanism in the form
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0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
(1)
BV 0 0
Pk,
ﬁ(l) 1% :
0 - v 0
Ef = e 0
0 0 - ﬁ(i) Yyl
pZ KZ
0 0 0
(2)
_ ﬁz 4 YI(X) 0 0
P x,
@, (6.31)
0 - ﬂ(z) v, 0
Px’ Ky
(2)
0 0 - ﬁ(z) Yy
Px’ Ky
The matrix E” in (6.28) is a diagonal matrix and has a structure
E/ 0
E” = e R¥n (6.32)
0 E///

n
where each matrix E;” e R¥*3 , with [ = 1,...,n, is itself a diagonal matrix containing only

the relaxation frequency @, of the [-th mechanism on its diagonal, i.e. E = — @, -1 with

I e R3S denoting the identity matrix.
Finally the E” block in (6.28) has a form
EY

E =| i |e R (6.33)

o

n

where each sub-matrix E;’ € R3X13, with [ = 1,..., n, contains the relaxation frequency w;,

of the /-th mechanism in the form
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(6.34)

S O O
S O O
S O O
S O O
S O O
S O O
S O O
S O =
S = O
- o O

7 Attenuation of seismic waves

In this chapter we will present derivation of equations of motion, which contain expression
responsible for attenuation of seismic waves due to anelasticity of the frame. It should be
noted, that these dissipation and attenuation processes are not caused by viscous resistance to
fluid flow. Here is introduced only dissipation phenomena of mechanical, chemical or
thermomechanical nature, associated with the anelasticity of the frame, which are usually
taken into account by introducing a viscoelastic rheology.

From chapter three and four we know, that constitutive equations and equations of

motions have following structure:

o; = A0, & +2G€i’f—§i]~ aM ¢
(7.1)
p=-aMe, + M ¢
Cjj =P Ui+ pPrw
n T .. i (7.2)
P = Pru; + gpf w; + bw;
As we mentioned earlier relation (7.2) is only valid at low frequencies. Our interest is to study
wave propagation in porous material at seismic frequency, which belongs to low-frequency
range according to O’Brien (2010) and Masson (2007). Unfortunately, constitutive equations
(7.1) do not contain attenuation controlled by the anelasticity of the frame, therefore we have
to introduce viscoelastic rheology.
New form of relation (7.1) may be obtained by introducing some of the parameters

mentioned in chapter three and four:

1 2
o =Ky 0, €5 + 26(8,.1”7 - 53/?/1 50) +a Mo ey + aMo;w 73
where
K K
M = S . a=1--M (7.4)
1-9—Ky /Ks+0Kg/Kp K

At this point we can make same assumption as Morency (2008), that only the time-

dependence of the bulk and shear moduli of the frame, K ,, and G, needs to be considered,
accommodating the fact that various forms of energy dissipation may occur at grain contacts.
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In practice, attenuation in the Earth is mainly controlled by the shear quality factor, such that
only the time dependence of the isotropic shear modulus G need be accommodated.

For modelling a variety of dissipation mechanisms related to the skeleton-fluid
interaction we will use rheological model of General Maxwell body, which based upon using
linear combinations in parallel of so-called Maxwell Bodies, essentially a spring and a
dashpot connected in series.

Then we can express constitutive equations (7.1) as:

oy =Ky 0y€ +aMo;w + azM‘sijgl?;c +

m 1 m c m s ij 1m
ZG(SU - 3% 5,.]) - >2v°G ( /3 ¢ 5,.]) (7.5)
=1

The anelastic functions (Moczo 2014) are solutions of the differential equations
d . y
E;;’(t) + @, ¢/ (1) = o gij(t), l=1..n (7.6)

The equal-index summation convention applies to spatial index k but does not apply to
subscript /. For n characteristic frequencies @, we have n anelastic coefficients YlG.

Make partial summary: Equations of motion (7.1) and constitutive equations (7.5),
together with differential equations (7.6) for anelastic functions generate system of equation

describing wave propagation of seismic waves in poroelastic medium with anelastic frame.

8 Algorithmical preparation

This last chapter is devoted to algorithm preparation of theory of poroelasticity for modelling
of seismic propagation using finite-difference method in 3D. We are going to express our

constitutive equations and equations of motion in velocity-stress formulation. Numerical

scheme uses uniform staggered space-time grid and it is a 2" order accuracy in time and 4nd
-order accuracy in space.
The explicit expression of the constitutive equations (3.18) and poroelastic wave

equations (4.16) can be written in velocity-stress formulation in 3D case as
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9o, av, av, av, av,
=2G + Ay + +—| +
ot 0x ox dy 0z
ow_ oW, JIW oV, dV, 9V
a SRR 7 AR R
dox dy 07 ox 0y 0z
00 oV aV, dV, dV
2= 2G| |+ 4 —+ L+
ot (ayj+ M(8x+8y+azj+
oW, W ow. oV, dV aV,
o vt M| S+ L+
ox 0y 07 ox 0y 0z
oV ov. dV, adV
99 _ 56|25, |l —+=2+==|+
ot 0z ox dy 0z
ow,. oW, JIW oV, dV, dV
o L2 eyt M| —+ 2L+ =
dox dy 07 ox 0y 0z
ao-_xy:G avx +aL
ot dy Jdx
doy, _G ai+avz
ot z dy
00, _ (V. V.
- _ N
ot dz 0x
ow,. oW, JIW ov., dV, dV
_9p _ 2t aM | —+ L+ =
ot ox dy 0z ox 0y 0z
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do,, do, do, oV, oW,
+ + =p + o

dx dy 07 ot ot
do,, . doy, . do,, _ pBVy Ny ow,
ox dy 0z at ot
Jdo,, . do,, do _ pavz y ow
ox oy 0z ot ot
S AR Pt S 1y

ox P ar TP o T
__r _ > _ + L

oy Pr o TP o T
Tae TP Tt i &

where Ve V.V, and W W, , W, are solid particle velocities and relative solid to fluid

velocities.
In order to discretize the equations of motion (8.2) on staggered grids for finite-difference

algorithms, we rewrite the equations into the following form
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oV d d 0
x 1 F( Ou 90y zeJJra_erQWx}

T
ot Lo-p, ¢\ dx dy 0z ox K
¢
v, _ 1 Z(aayy+80'xy +80'yzj .\ ap .\ QWy
ot Zp—pf o\ dy 0x dy dy K
¢
aV, _ 1 T BO'ZZ+BO'XZ+80'yZ .\ Ip . QWZ
ot Tr ol dy 0x dy 0z K
P—Py
¢
ow 0 0 0
= = ! p—f O-xx+ O-xy+ Oz +8_p+wa
ot p}% Tpsl P 0x dy dz ox K
p ¢
oW, _ 1 Py doy, +80'xy +80'yz . dp ™
ot p]% Tp;l P dy dx dy dy k °
p 9 (8.3)
ow, _ 1 Py aazz+80'xz+aayz . ap . QWZ
ot :0]% Tp,| P dz dx dy dz Kk °

p 9

Denote the discrete grid values of the particle velocity components V Vy, Vo, W, W W, by

VX,VY,VZ, WX WY WZ . Similarly denote the stress-tensor components

01x: 04y 0,0,,,0,,,0, by TXX,TYY , TZZ,TXY,TXZ,TYZ and pore pressure p by

P . Figure 8 shows the staggered grid cell of (2,4) velocity-stress scheme. We may
approximate the first of equation (8.3) at the time level m and spatial position

ILK+1/2,L+1/2
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® TXX™, YY" TZZ", P
. VXm+1/2,Wm+l/2

O e
v VYm+1/2,WYm+I/2

V TYZ™
. VZm+l/2,WZm+l/2

O ez

Figure 8 Grid cell in the staggered grid.

It should be noted, that we assume smoothly and weakly heterogeneous isotropic poroelastic

unbounded medium. For brevity we will only consider equations for V., W, and o, p. The

staggered format of equations (8.1) and (8.3) can be written as
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m _ m—1
TXX1+1/2, K+1/2, L+1/2 TXX1+1/2, K+1/2, L+1/2

A 9 12 )
+ ;{(AM +2 G)1+1/2, K+1/2,, L+1/2 |:§(VXZI K+1/2,L+1/2 ~ VXY;KH/Z, L+1/2)

! -1/2 -1/2
o4 (Vxﬁz K+1/2, L+1/2 ~ VX;n—l, K+1/2, L+1/2 )J

9 12 -1/2
+(’1M )1+1/2, K+1/2, L+1/2 {g(VYIHiI/Z, K+, L+1/2 VYI’ﬁl/z, K, L+1/2)
1 -2 12
_ﬂ (VY 1’21/2, K+2,L+1/2 — VY 1’11/2, K-1, L+1/2 )}
() g(vz’"‘l/ 2 _yzm)2 )
M ] 112, k+1/2, L+1/2 | 8 I+1/2, K+1/2, L+1 I+1/2, K+1/2, L
1 vym2 vyn2
_ﬁ I1+12, K+1/2, L+2 — VT 1+1/2, K+1/2, L—l)
M 9 m—1/2 wx Y2
+(a )1+1/2, K+1/2, L+1/2 g I+, K+1/2, L+1/2 — "2 1 K+1/2, L+1/2)
1 m—1/2 m-1/2
o4 (WX1+2, K+1/2, L+1/2 ~ WX1—1, K+1/2, L+1/2 )}

2 (WY”H/ 2 _wym2 )

+(aM )1+1/2, K+1/2, L+1/2 [8 1+1/2, K+1, L+1/2 1+1/2, K, L+1/2

1

_ L (wym-12 _wym2 }
24( I+1/2, K+2, L+1/2 1+1/2, K—l,L+1/2) (8.4)
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+aM )1+1/ 2, K+1/2, L+1/2 [% (Wzﬁ_l/l/22 K+1/2,L+1 WZKI/I/Z?K +/2.L )
—% ("VZ;,-E/IQ2 K+1/2,L+2 ~ WZK_I/I/ZZK +/2, L-1 )}
+(0’2 M )1+1/2, K+1/2, L+1)2 E(VXK_LI/I?H/& L2 ~ VXL ;<1/+21/ 2, L+Y 2)
_i (VXﬁ_zl,/?ﬁl/z, L+/2 VX;n—_ll/I? +1/2, L+1/2 )J
+ (a M ) I+1/2, K+1/2, L+1/2 [g (VYI’ZI/%,ZK +, L+1/2 VYIY‘,:/lé’ZK L+1/2 )
- % (Vnﬁf/lé,zmz, L+12 VYI’ZI/%,ZK -1, L+1/2 )}
+ (Q,Z M )1+1/ 2, K+1/2, L+1/2 [% (VZﬁ_l}/Zz K+1/2,L+1 VYIIE/ZZK +/2,L )
—% (Vzﬁﬁ/l/z?m/z, Lo VI ka1 )}}

39



m _ m—1
-P I+12, K+1/2, L+1/2 — P 1+1/2, K+1/2, L+1/2
A 9 m—1/2 m—1/2
+ ;{M I+1/2, K+1/2, L+1/2 {g(WXm, K+1/2, L+1/2 — WXI, K+1/2, L+l/2)
1 m—1/2 m-1/2
_ﬁ( I1+2, K+1/2, L+1/2 WXI—l, K+1/2, L+1/2)
2 (wym12 _wym2 )
3 1+1/2, K+1, L+1/2 I+1/2, K, L+1/2
1 m—1/2 m-1/2
_g (WY1+1/2, K+2,L+1/2 ~ WY 1+1/2, K-1, L+1/2 )
g I1+1/2, K+1/2, L+1 I1+1/2, K+1/2, L
1 m—1/2 m=1/2
_Q(Wzm/z, K+2,L+2 WZI+1/2, K-1,L-1 )}
9 ((vm-1/2 m-1/2
+(a' M )1+1/2, K+1/2, L+1/2 [g(VXHL K+1/2, L+1/2 VXI, K+1/2, L+1/2)
1 m-1/2 m—1/2
_Q(VXI+2, K+1/2, L+1/2 VXI—I, K+1/2, L+l/2)
L2 (yym-i2 _yyml2 )
g\" T IHY2, K+, L+1/2 1+1/2, K, L+1/2
1 m-1/2 m—1/2
_ﬂ(v I+12, K+2, L+1/2 VY1+1/2, K-, L+1/2)
8 I+1/2, K+1/2, L+1 I+1/2, K+1/2, L
(8.5)
1 m—1/2 m—1/2
_a(vzlﬂ/z, K+2,L+2 VZI+1/2, K-1,L-1 )J}
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and

m+1/2 _ m—1/2
VXI, K+1/2, L+1/2 — VX I,K+1/2, L+1/2

A I
h' T pr k2, 141)2 _( )
p, 1 k2, L2

T9
{{__ (TXX 12, k2, 12~ TXXT )0 ko, )

o8

1

4 (TXX 1432, k12, 112 = TXX 12300 k41/2, 141/2 )

9

+ g(TXYI’TLKH, L2 = TXY]" L+1/2)

1

Y (TXY k2, 12~ TXY] k1 ey 2)

9
+ 3 (TXZ}? k+12, 141 — TXZ]" ko, L)

1

—Q(TXZ}? k+1/2, 142 ~ TXZ[" k42 141 )}

9
+[8 (P Inf-l/z, K+1/2, L+1/2 — Iy 1”11/2, K+1/2, L+1/2)

1

4 (})1?3/2, K+1/2,L+1/2 — P1m—3/2, K+1/2, L+1/2 )J

+% (WX}W K+1/2, L+1/2 )}
(8.6)
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m+1/2 _ m-1/2
WX k2, 2 = WXI k2, 12

A 1 Py 9
) D] s e T s )
Py IK+1/2, L+1/2 T (pf )1, K+1/2, L+1/2 LR L2
0 ¢

1

—E(TXX 1432, k2, 142 ~ TXXT 30 gy, Ly 2)
9 m m

+ g(TXYI, K+, 1412 —TXYp g L+1/2)
1

Y] (TXY Tk, 142 — TXY] k1 1412 )}
9 m m

+ 3 (TXZI, k)2, L ~IXZp ko 1 )
1

—Q(szfmm, [+2~ TXZ?? K+1/2, L-1 )}
9

+{§(PIIZ1/2, K+1/2, L+1/2 ~ Plnjl/ 2, K+1/2, L+l 2)
1

—E(Plrfa/z, K+1/2, L+1/2 ~ 131"—13/2, K+1/2, L+1/2 )}

n
+;(fon K+1/2, L+1/2 )}
(8.7)
where (ZM ) 1412, K+1/2, L +1/2’G1+1/2, K412, L+1/2> X2, k412, L2 M 2, k4172, L1125

( Py )I K42, 42 Pr, k+1/2, L+1/2 are effective grid material parameters, defined as an integral

harmonic averages:
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(lM ) 1+1/2, K+1/2,1+1)2

G1+1/2, K+1/2,L+1/2 =

Ari1)2, K+1/2,L+1/2 =

Xpp1 (Y 2 1
M 1, k2,2 = {hz'f MJ‘ KHJ. o o ey dz}

_ h2 J'XIHJ‘)’KHJ‘ZLH dx dy dz}l

h2 J'X1+1J'yK+1.|‘ZL+1 1 dx dy dz}_l

h2 J‘X1+1J'y1<+1J'ZL+1 1 dx dy dz} -

-1

-1
1
('Of )I,K+l/2, L+/2 Lﬁ J‘;,Iii/jj‘ymj.zm dx dy dz}

Pr,k+1)2, L+12 = {hz

Another parameters, such as ¢, 7,7, k¥

Relations (8.4), (8.5), (8.6),

J’x1+1/2J’yK+1J'ZL+1 1 dx dy dz}_l

Xr-1/2

are assumed to be homogenous.

(8.7), (8.8), together with

(8.8)

for

1YY, TZZ,TXY,, TXZ,TYZ, VY ,VZ, WY ,WZ form velocity-stress scheme on staggered grid,

that will be used for numerical simulation of seismic motion in our master thesis.

Conclusions

In this thesis we presented:

¢ an introductory text on the theory of poroelasticity, starting by defining the poroelastic

medium as a material containing pores that are typically filled with a fluid,

® Dbasic terms, parameters, assumptions and conditions, which are essential for derivation

of constitutive equations and equations of motion,

e derivation of the constitutive equations for isotropic and anisotropic poroelastic media,

e derivation of the equations of motion for a poroelastic material at a low-frequency

range on the base of Hamilton's principle,

e demonstration of the existence of wave of second kind, also denoted as slow P wave,

e Dbehavior of one S wave and two P waves, together with derivation of velocities and

attenuation coefficients for these waves,
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® cquations of motion in poroelastic media at high-frequency range using the General
Maxwell body and viscodynamic operator,

¢ implementation of mechanical attenuation into equations of motion at low frequencies,
caused by anelasticity of the frame,

e staggered-grid finite-difference scheme for numerical modelling of seismic motion.

The presented material can serve a sufficient theoretical basis for possible future elaboration
in the team of supervisor:
¢ modification of the constitutive relations and equations of motion for the case of
thermoporoelasticity to describe dynamic fault weakening mechanism, known as
thermal pressurization of pore fluid,
* numerical simulation of seismic wave propagation and earthquake motion for a
poroviscoelastic model which makes it possible to account for attenuation due to
anelasticity of the real Earth 's material,

¢ combine Iwan model with poroelastic rheology.

Appendix A

In this appendix we focus on the presentation of derivation of relations in equation (6.6). Let's

begin with generalized Biot-Willis's effective stress coefficients ¢;; .
In chapter four we have introduced effective stress-strain relation denoted as:

eff _ m m

y

It should be noted, that equation (A.1) can be inverted to strain-stress equation related to § Z;d ,

where § Z;d is the compliance tensor, which satisfy this condition:

irjs isYjr
Now we can continue deriving formula for stress coefficient for anisotropic case. This proof is
based on work of Cowin (2013) and Carcione (2001).
Consider now a representative elementary volume of saturated porous medium. It is

bounded by the outer surface S, and by inner surface S, (pore boundaries). Let us consider
the stress vector:

t! =—-pn; on S,
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This stress acting on a cube of material (only a cross-section is visible) is illustrated in . The

pores in this porous media are represented by ellipsoids in the

t

RN RN

U
wie

PEFffes
t

Figure A.3 Picture of total loading for a cube of material representing a mechanically loaded
portion of a saturated anisotropic compressible poroelastic medium.

=
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trttrtt
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The first key to this proof is to treat the (B.3) as the superposition of two separate stresses

tl-o =-—pn; on S, (Ad)
t! =—-pn; on S,
and
0
tP =0 on §,

The situation for (A.4.) is illustrated in Figure A.4a). It corresponds to the unjacketed
conditions where p = p®’ . It should noted, that the strain in the porous material is equivalent
to strain in the matrix material. This means, that uniform straining of the matrix material
results in the same straining of the pore space. We can illustrate this clearly by pointing out
that the stress relation (A.4) of the solid is achieved by filling the pores with the matrix
material. This is pictured in Figure A.4b). Replacing pores with the matrix material has
created uniform cube in which the pressure everywhere is the same. Therefore there is no
difference in the pressure and strain in Figure A.4a) and those in Figure A.4b. The conclusion
that has just been drawn is independent of the shape, size, and connectivity between the pores.

Thus, the pores of Figure A.4a) could all be of arbitrary shape and size and they could all be
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connected as shown in Figure A.4c), but the same pressure p acts everywhere as well as the

same homogeneous strain, just as in all three figures.

v

MR

RN

rrrrtt

p P
Figure Ada) Picture of total loading for a Figure Adh) Picture of total loading for a
cube of material with separated pores undsr cube of material without pates.

utgacketed conditions.

|

p—*_ ¢+ p—* — p—>

e

p

Figure Ade) Picture of total loading for a
cube of material with intercontected pores.

rtt

The resulting strain for (A.4.) is related to the compliance tensor of the solid sfjkl

e =~ p sty (A6)



The second equation (A.S5) looks like relation for stress vector under drained conditions at

confining pressure p = p®’ , but there is also additional stress acting on material. The

resulting strain of (A.5) has a form:

2 _ m
gij = sijkl (O-kl + pékl) (A7)
The total strain for dry material is then given by:
m _ (D) 2 _ . m m s
Ej =& T &7 = S0t p(sijkk_sijkk) (A.8)

The effective stress law is obtained by substituting equation (A.8) into equation (A.1), thus

one can obtain:

eff _ m m m K
Gij - Cijkl |:Sklmn Cwn + P (sklmm S kimm ):| (A.9)
or
eff m s —
o; =0, *+ P(5U ~ Cijkl sklmm) =0, tpa; (A.10)

e}ff

where we used relation 0;; = 0 — ap §ij from chapter four.

This equation provides the effective stress coefficient ¢; in the anisotropic case:

If the solid material is isotropic,
Oy
Sy = —— A.12
klmm 3 Ks ( )
then relation (A.11) can be rewritten as:
-1
Equation (A.13) can be expressed as:
a, =8, - cj (3K,) (A.14)
where «; has a form:
T
o; = (al,az,a3,a4,a5,a5,) (A.15)

From (A.15) we can obtain first 6 parameters of relation (6.6).

For fluid-solid coupling Biot's modulus M and bulk modulus K for anisotropic case we

need to rewrite second of equations (3.17) for anisotropic case as:

p = M(g—a,-j 8,’3,1) (A.16)
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using ¢ = — ¢ (8,5( - EZ;{) under unjacketed conditions we will obtain:
— f my _ pP 14
= =0\ €y~ €)=~ — — — A.l7
S ¢( ik kk) @ L Ky K, J ( )
Strain tensor under unjacketed conditions has form:
5.
e = - b % (A.18)
3Ky

Substituting equations (A.17) and (A.18) into (A.16) results in:

M = (A.19)

Using first three equations from relation (6.6) and introducing them into (A.19), we will

obtain:
KS
M = — (A.20)
.S B P S
K Kp
where
— 1
K = §|:C11+C22+C33+2(C12 +C13+C23)j| (A21)
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