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Predikcia seizmického pohybu na záujmovej lokalite je jednou z najdôležitejších úloh 

seizmológie zemetrasení vo vzťahu k spoločnosti. S výnimkou niekoľkých oblastí osídlenej 

časti povrchu Zeme nie je na dôležitých územiach a lokalitách dostatok dát na zistenie 

empirických vzťahov pre predikciu seizmického pohybu počas budúcich zemetrasení. Toto 

implikuje dôležitosť a nezastupiteľnosť teoretických metód a metód numerického 

modelovania vo vzťahu k predikcii seizmického pohybu. Presnosť a teda aj užitočnosť 

numerických metód záleží aj od miery realistického modelu povrchových štruktúr, najmä 

povrchových sedimentárnych štruktúr, ktoré spôsobujú anomálne zosilnenie a predĺženie 

trvania seizmického pohybu na povrchu. V niektorých prípadoch vodou nasýtených 

sedimentov je podmienkou realistického modelu prostredia a seizmického pohybu zahrnutie 

poroelasticity. Na rozdiel od jednozložkového kontinua (viskoelastického či 

elastoviskoplastického) je nutné explicitne zohľadniť aj prítomnosť pórov a kvapaliny v nich. 

Takéto prostredie je pre modelovanie seizmického pohybu relatívne zložité. V tejto 

bakalárskej práci sa venujeme základnej fyzike poroelastického prostredia, matematicko-

fyzikálnemu popisu (pohybová rovnica a konštitučný vzťah) a napokon príprave výpočtového 

algoritmu a výpočtovej konečno-diferenčnej schémy pre numerické simulácie šírenia 

seizmických vĺn a seizmického pohybu. 

 

Kľúčové slová: poroelastické médium, šírenie vĺn, seizmický pohyb 
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Earthquake prediction and prediction of ground motion during future earthquakes at a site of 

interest are the most important tasks of the earthquake seismology in relation to society. With 

the exception of only few populated areas on the Earth, there is a drastic lack of earthquake 

recordings that could be used for empirical prediction of the earthquake ground motion. This 

implies importance and irreplaceability of theoretical and numerical-modelling methods with 

respect to prediction of the seismic ground motion during future earthquakes. Accuracy and 

efficiency of numerical methods depends on how realistic is a computational model, 

especially in case of the sediment-filled structures, which can produce anomalously amplified 

or prolongated earthquake motion at the Earth’s surface. In case of water-saturated sediments 

we need to adapt poroelasticity into computational model in order to make simulation of 

earthquake motion more realistic. Contrary to a single-phase continuum (viscoelastic or 

elastoviscoplastic) it is necessary to consider presence of fluid-filled pores. This kind of 

material is for earthquake motion modelling relatively very difficult. In this bachelor thesis 

we present basic concepts of physics of poroelastic medium, derivation of equation of motion 

and constitutive relation, and a finite-difference scheme for numerical simulation of seismic 

wave propagation and seismic motion in poroelastic medium. 

 

Key words: poroelastic media, wave propagation, seismic motion 
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Foreword 

Seismology is the solid Earth geophysical discipline with highest societal impact, both in 

assessing and reducing the danger from natural hazards. It's major goal is study of 

earthquakes and the propagation of elastic waves through the Earth. In particular, the seismic 

waves and their analysis make it possible to investigate Earth's deep interior, where direct 

observations are impossible. However, the main task of modern seismology is directly 

concerned with seeking ways to reduce destructive impacts of seismic waves on human 

population and predict their behavior at a site of interest. 

My first experience with seismology at the university was during one-semester long 

course of "Mechanics of Continuum". After one semester of studying I was captivated with 

seismological theory. How it could be on one hand a difficult mathematical subject and on the 

other hand able to present fascinating theoretical problems involving analysis of elastic wave 

propagation in complex media. This is also the reason, why the topic of my thesis is related to 

the earthquake prediction and prediction of ground motion. Elaboration of topic "Wave 

propagation in poroelastic media" gave me an opportunity to become familiar with works of 

one the best seismologist in field of numerical modelling of earthquake motion. It should be 

noted that general porous material is an anelastic, anisotropic, multi-phase medium, with all 

attributes of realistic model of the Earth material, and therefore implementation of this 

rheology for numerical modelling cannot be excluded.  
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1 Introduction 

Wave propagation in fluid-saturated porous media is a topic of increasing interest in many 

geophysical fields. Wave forms and amplitudes provide knowledge about the properties of the 

material in the subsurface and can be used in earthquake engineering, geomechanics, 

petroleum engineering and hydrogeology. The study of wave propagation in porous media 

helps us to better understand behavior of seismic waves. The term poroelasticity was first 

established by J. Geertsma in his work: "Problems of rock mechanics in petroleum production 

engineering". He defines a saturated porous material as medium formed by two 

interpenetrated phases. One of them is the solid phase, which constitutes the matrix of the 

poroelastic material, and second one is the liquid phase, which constitutes the saturated fluid. 

Two basic phenomena underlie behavior of poroelastic material: 

 

• Solid to fluid coupling occurs when a change in applied stress produces a change in 

fluid pressure or fluid mass. 

• Fluid to solid coupling occurs when a change in fluid pressure or fluid mass produces 

a change in the volume of the porous material. 

 

Poroelastic behavior can explain an initially unexpected connection between causal event and 

its subsequent effect. Here are two historical examples: 

 

• Water Levels Change in Well as Trains Pass. F. H. King (1892) of the University of 

Wisconsin reported that water levels in a well near the train station at Whitewater, 

Wisconsin, went up as a train approached and went down as a train left the station. 

The water level fluctuation was greater for a heavy freight train than for a lighter and 

faster passenger train (Wang 2000). 

• Water Levels in Boardwalk Wells Fluctuate with Ocean Tides. In 1902th United 

States Geological Survey reported that water-level oscillations in wells in Atlantic 

City, New Jersey, were synchronous with ocean depths, because the weight of sea 

water at high tide compressed the underlying rock, thereby forcing pore water up the 

wells (Wang 2000). 

 

Our analysis of poroelastic theory and presentation of derivation of equations of motion in 

poroelastic media is mainly based on books of Bourbié (1987), de la Puente (2008) and article 

of Biot (1956). In dealing with problem of wave propagation in porous material for dynamic 

analysis of the subsurface according to Bourbié (1987), two approaches are possible: 
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• The first approach is based on homogenization procedure, which helps us to pass from 

laws on microscopic scale to macroscopic ones. The microscopic laws apply here at 

the scale of the heterogeneity (in our case a porosity), whereas macroscopic laws refer 

to a scale related to the heterogeneous medium, which is in fact the measurement 

scale. 

   We shall note that there are two homogenization methods. The first one is based 

on averaging procedure, where microscopic problem is first resolved at the level of an 

elementary cell containing an isolated heterogeneity (in our case a fluid-filled 

channel). From the solution to this elementary problem, we then derive the mean value 

on the cell of the quantity analyzed (stresses, strains...) as a function of the 

macroscopic value imposed at the cell boundary (strains, stresses...). After this 

procedure, the heterogeneous medium can be replaced by a fictitious homogenous 

medium. The response of the medium to an imposed force is the mean value 

previously calculated. The function linking them depends spatially on the geometric 

and mechanical parameters of the heterogeneities existing in actual medium. This 

method can be used for low and medium concentrations of heterogeneities, where cell-

to-cell interaction processes can be ignored.  

   The second homogenization method assumes the periodically repeated 

microscopic heterogeneous structures. If we make a spatial period tend towards zero 

with respect to the macroscopic scale (small parameter asymptotic method), the form 

of the macroscopic laws can be derived. 

• The second approach relies on concepts of mechanics of continuum (existence of 

potential, kinetic energy and stationary principles) and deliberately ignoring the 

microscopic level. This method can be straightforward applied to measurable 

macroscopic values. This older approach is also presented by Biot (1956) in his work. 

The porous material presented in this thesis is based on the conceptual model of a 

coherent solid skeleton and a freely moving pore fluid. 

 

In this study we will apply the second approach. 

The main difference between the wave fields in a poroelastic material and those in an 

elastic one is the existence of a wave of the second kind, in addition to the standard 

compressional and shear waves. This wave, also called slow P wave, which behaves 

diffusively at low frequencies (e.g. seismic frequencies) and propagates at a very slow speed 

through the medium. This is caused by dominance of the fluid-viscosity effects over the 
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inertial effects. As a consequence, this wave is significant only very close to the source or 

near material heterogeneities. 

Analytical solutions for wave propagation problems in poroelastic media exist, but are 

usually limited to extremely simple model problems. Therefore, many studies consider the 

numerical solution of Biot's equations. The finite-difference method has been one of the early 

methods applied for this purpose in two dimensions and three dimensions. 

1.1 Assumptions 

• The first assumption states that the wavelength is significantly larger than largest 

dimension of the pores. This assumption is normally always satisfied in geophysical 

applications. 

• The second assumption demands small fluid and solid displacements. This assumption 

is fully justified, because the strains in seismic studies (laboratory or field) are less 

than 610− . 

• The third assumption requires the liquid and solid phases to be continuous. 

• The fourth assumption concerns the matrix (frame) which is in this case elastic and 

isotropic, but it should be noted that the theory can be extended to the anisotropic 

elastic case. 

• The fifth deals with distribution of individual phases in porous media. We assume, that 

all pores are interconnected (completely filled by fluid represented as continuum, so 

that fV
 
is also the volume of void space). In fact (Bourbié 1987), every natural porous 

medium possesses both types of porosity (disconnected and connected), so that the 

liquid that participates in the motion of the slow wave is merely the fraction of liquid 

contained in the connected porosity. It is important to realize that the coarse image by 

which one considers that, among the two compressional waves, one moves within the 

liquid and second in the solid, is false. In fact, the porous medium is a material 

constituted of solid and liquid phase coupled together. A more accurate image can be 

represented by sample as a system of two springs with eigen vibrations in of phase and 

out of phase. 

• The final one concerns the absence of thermo-mechanical and chemical effects. 

 

To describe the mechanics of the poroelastic material, we must define two fluid 

equivalents to the solid matrix stresses m
ijσ

 
and strains m

ijε , which are the fluid's pressure p  

and the fluid strains f
ijε . Strains tensors for fluid and solid can be subsequently expressed as 
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( )1

2
m

i j j iij u x u xε = ∂ ∂ + ∂ ∂
 
and ( )1

2
f

i j j iij U x U xε = ∂ ∂ + ∂ ∂ , where iu  and iU
 

is solid and fluid displacement. Together they form ( )i i iw U uφ= − , which is displacement 

vector of fluid relative to that of the solid. It is also convenient to establish relation for density 

of bulk as ( )1 s fρ φ ρ φ ρ= − + . A poroelastic material can be described using measurable 

quantities from solid, fluid and matrix (frame), where matrix corresponds to skeleton part of 

material (poroelastic material without fluid). These quantities are denoted by letters s, m, u 

respectively S, M, U and summarized as follows: 

 

• Solid 

sρ  - density of solid phase 

SK  - bulk modulus of solid phase 

λ  -  Lame's elastic coefficient 

• Fluid 

fρ
 

-  density of fluid phase 

FK  - bulk modulus of fluid phase 

η  -  viscosity 

p  -  pore pressure 

ς  -  variation of fluid content (the increment of fluid volume per unit volume of 

solid) 

• Matrix 

MK  -  drained bulk modulus (bulk modulus of matrix)  

Mλ  -  drained Lame's coefficient 

G  -  matrix's shear modulus 

φ  - porosity 

κ  -  permeability 

T  -  tortuosity 

• Parameters of solid/fluid interaction 

UK  - undrained bulk modulus 

M  -  Biot's modulus 

α  -  Biot-Willis's effective stress coefficient 

,R Q  -  material constants for fluid/solid interaction 
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B -  Skempton's coefficient 

 

Most of these quantities are well known from fundamental physics and elastic mechanics, 

except tortuosity, porosity and permeability. The tortuosity T  is related to the ratio between 

the minimum (straight) and actual distance between two points of the pore space, due to the 

"tortuous" path of the pore connection. The porosity φ  is defined as a ratio P TV V , where  

PV
 
is the volume that takes the pore space (in our case of full saturation P FV V= ) and 

T S FV V V= +  is the total volume of the material. The permeability κ  is a measure of the 

ability of porous material to transmit fluids. Other quantities will be defined subsequently in 

text.

2 Undrained, drained and unjacketed conditions 

In this section we will discuss conditions that can be porous media exposed to, presented by 

Detournay (1993), de la Puente (2008) and according to website www.environment.uwe.ac.uk 

(2003). These conditions, specifically tests that can be carried out and characterize individual 

conditions are used to determine some of the fundamental coefficients, which are then 

employed in calculus. Three types of tests are usually executed to determine the poroelastic 

parameters: 

 

• the drained test where the confining pressure ext
p  is applied and pore pressure p  

remains constant 

• the unjacketed test characterized by an equal increase of the confining pressure ext
p   

and pore pressure p  

• the undrained test where a confining pressure ext
p  is applied on the rock, but no fluid 

is allowed to enter or leave the core sample. 

 

All these tests can be carried out in laboratory to measure mentioned parameters. An 

apparatus can be schematically described as pressure vessel with jacketed core of rock placed 

between two endcaps. Confining pressure can be applied hydraulically. 

Pressure vessel's endcaps are either designed with drainage holes, in order to control of 

the pore pressure during exchange of fluid with the sample for the drained test, or solid for the 

undrained test. Note that the increments of pressure used in these experiments are typically of 

order of a few MPa . 



 

 

2.1 Drained conditions 

Drained conditions correspond to deformation

pressure ext
p , with the fluid being

however is required to keep pore pressure

be reached by inserting a tube into the rock and connecting it to a fluid reservoir at th

pressure. The parameter MK

changes in applied stress while holding pore pressure constant.

pressure is transmitted to the frame, and therefore one can define the 

the matrix as ext
MK p= −

Figure 2.1a). The representative elementary volume of porous material under drained 

conditions is pictured in Figure 2.1

  

 

 

2.2 Undrained conditions

The opposite limit is undrained

fluid is not allowed to flow in or out during deformation 

pressure p  are induced. This means 

occur, which is dissipation of excess pore pressure, accompanied by volume change

opening endcaps. The rate of consolidation is dependent on the permeability of the solid phase 

and size of the consolidating layer. Transient undrained conditions prevail during 

consolidation, but eventually, when all of the excess pore pressure has been dissipated, 

conditions are the same as those for drained

volumetric change V∆  and confining pressure chang

Figure 2.1a) Time dependence of 
pressure and volume under drained 
conditions. 
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conditions correspond to deformation at sufficiently slow rate, at fixed

, with the fluid being allowed to flow in or out of the deforming element 

pore pressure p  constant. The state of constant pore pressure can 

by inserting a tube into the rock and connecting it to a fluid reservoir at th

M  can be obtained by measuring the volumetric strain due to 

changes in applied stress while holding pore pressure constant. In this case, all the external 

pressure is transmitted to the frame, and therefore one can define the drained

ext m
kkε . Situation describing drained conditions

The representative elementary volume of porous material under drained 

Figure 2.1b). 

Undrained conditions 

is undrained deformation occurring at the time scale that is too short

in or out during deformation and, in general, changes of

This means 0ς = . After some period of time consolidation will 

of excess pore pressure, accompanied by volume change

. The rate of consolidation is dependent on the permeability of the solid phase 

and size of the consolidating layer. Transient undrained conditions prevail during 

eventually, when all of the excess pore pressure has been dissipated, 

conditions are the same as those for drained case. Two measurements can be made

and confining pressure change ext
p∆  for the determination of 

pendence of 
volume under drained 

Figure 2.1b) The representative 
elementary volume of porous 
material under drained conditions. 

at fixed hydrostatic 

allowed to flow in or out of the deforming element 

The state of constant pore pressure can 

by inserting a tube into the rock and connecting it to a fluid reservoir at the same 

obtained by measuring the volumetric strain due to 

In this case, all the external 

drained bulk modulus of 

describing drained conditions is pictured in 

The representative elementary volume of porous material under drained 

 

occurring at the time scale that is too short, so the 

and, in general, changes of pore 

After some period of time consolidation will 

of excess pore pressure, accompanied by volume change after 

. The rate of consolidation is dependent on the permeability of the solid phase 

and size of the consolidating layer. Transient undrained conditions prevail during 

eventually, when all of the excess pore pressure has been dissipated, 

Two measurements can be made: the 

for the determination of 



 

 

undrained modulus UK V p V= ∆ ∆

( )extB p p= ∆ ∆ , which is Skempton

pictured in Figure 2.2a). The representative elementary volume of porous material under 

undrained conditions is pictured in

  

  

2.3 Unjacketed conditions

It is related to the case when the increase in confining pressure is equal to the increase in pore 

fluid pressure. This test can be carried out 

the pressure p  is applied. This 

and the φ  fluid part of the surface of the material. From this experiment we will obtain two 

relations m
S kkK p ε= −

 
and 

next chapter. 

3 Constitutive equations

In this chapter we will present derivation

following work of de la Puente (2008). T

a fluid-filled porous material, is given by

 

m f m m
ij ij

f

Q

R Q

σ ε δ ε δ ε

σ ε ε

= + − +

= +

Figure 2.2a) Time dependence of 
pressure and volume under undrained 
conditions. 
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ext
K V p V= ∆ ∆

 
and the pore pressure chang

, which is Skempton's coefficient. Situation describing drained conditions is 

The representative elementary volume of porous material under 

drained conditions is pictured in Figure 2.2b). 

 

Unjacketed conditions 

t is related to the case when the increase in confining pressure is equal to the increase in pore 

can be carried out by immersing whole poroelastic s

is applied. This pressure will distribute itself among the 1−

uid part of the surface of the material. From this experiment we will obtain two 

and f
F kkK p ε= −  which we will be subsequently

Constitutive equations 

present derivation of constitutive equations for poroelastic media 

following work of de la Puente (2008). The most general form of the constitutive equation for 

is given by 

2
2

3
m f m m

ij ijij ijkk kk

f m
kk kk

K GQ G

R Q

σ ε δ ε δ ε

σ ε ε

 
= + − + 

 

= +

 

pendence of 
pressure and volume under undrained 

Figure 2.2b) The representative 
elementary volume of porous material 
under undrained conditions. 

pore pressure change p∆  for B  

describing drained conditions is 

The representative elementary volume of porous material under 

 

t is related to the case when the increase in confining pressure is equal to the increase in pore 

by immersing whole poroelastic sample in fluid so 

φ−  part of the frame 

uid part of the surface of the material. From this experiment we will obtain two 

subsequently used in the 

constitutive equations for poroelastic media 

he most general form of the constitutive equation for 

 (3.1) 

The representative 
elementary volume of porous material 
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where f pσ φ= − . This relation is called partial stress formulation. The first equation of (3.1) 

for stress in terms of strain and pore pressure may be inverted to solve for strain, leading to: 

 
( )2

1 1 1

2 69

m m m
ijij ij kk

G GK Q R
ε σ δ σ

 
 = + −
 −
 

 (3.2) 

Parameter G  can be easy obtained by subjecting the material described in (3.1) to a pure 

shear deformation, so that 0m f
ij ijε ε= =

 
for i j= . It can then be shown, that 

2m m
ij ijGσ ε= , so the parameter G  responds to matrix’s shear modulus MG µ= . For 

identifying parameters , ,K Q R  we will use conditions described in chapter 2. 

Using (3.1) under the drained conditions one can obtain: 

 

ext

0

m f
ij ijkk kk

m f
kk kk

p K Q

Q R

ε δ ε δ

ε ε+

− = +

=
 (3.3)  

After applying ext m
M kkK p ε= −

 
one can obtain a relation between MK  and the still 

unknown poroelastic parameters ,K Q  and R. 

 
2

M

Q
K K

R
= −  (3.4) 

After carrying out unjacketed experiment we mentioned earlier, equation (3.1) becomes: 

 
( )1 m f

ij ijkk kk

m f
kk kk

p K Q

p Q R

φ ε δ ε δ

φ ε ε

− − = +

− = +
 (3.5) 

We can see that the pressure is acting from the inside of the porous rock, and therefore the 

compressional properties deduced from the experiment are those of the rock or solid instead 

of those of matrix. One can use m
S kkK p ε= −

 
and 

f
F kkK p ε= −

 
introduced earlier to 

obtain further set of constraints on the unknown parameters ,K Q  and R as follows 

 

1
F S

F S

Q K

K K

R Q

K K

φ

φ

− = +

= +

 (3.6) 

which combined with (3.5), builds up a system of three equations and unknown parameters  

which can be solved as follows: 
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( )( )

( )

2

1 1

1

1

1

1

M S S S M F

M S S F

M S S

M S S F

S

M S S F

K K K K K K
K

K K K K

K K K
Q

K K K K

K
R

K K K K

φ φ φ

φ φ

φ φ

φ φ

φ

φ φ

− − − +
=

− − +

− −
=

− − +

=
− − +

 (3.7) 

Using relations above, we can introduce some new parameters and following relations can be 

found 

 

( )

( )

2

2

2

M

M

K M K

Q M

R M

M
B

K M

α φ

φ α φ

φ

α

α

= −

=

+

−

=

=
+

 (3.8) 

 2
MUK K Mα= +  (3.9) 

where the fluid-solid coupling Biot's modulus M  is denoted as: 

 
1

S

M S S F

K
M

K K K Kφ φ
=

− − +
 (3.10) 

and the effective Biot-Willis's stress coefficient α  has this form: 

 
( )

1 M

S

KQ R

R K

φ
α

+
= = −  (3.11) 

From equations (3.9, 3.10, 3.11) one can obtain: 

 1

S FM K K

α φ φ−
= +  (3.12) 

 

1 1 1 1

1 1 1 1 1 1

S F S M

U

M S F S S M

K K K K
K

K K K K K K

φ

φ

   
   − + −
   
   =
   
   − + −
   
   

 (3.13) 

Note that (3.11, 3.12, 3.13) are quite compatible with limit cases. For solid medium 

corresponding to 0α φ= = , the expected values M U SK K K= =  and M → ∞  are 

obtained. For fluid medium corresponding to 1α φ= = , we obtain 0MK =  and  

F UK K M= = . 
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After defining new constants, we can express relation (3.1) as: 

 

( ) ( )

( )

2
ijij

2

2

δ

2
3

fm m
kk kk

m m
M ij ijkk

m ff
kk kk

M M

K G G

M M

α φ ε α φ φ ε

δ ε ε

σ α φ ε

σ

φ ε φ

 = − + −


 
 


= − +

+


+

−  (3.14) 

First expression of (3.14) can be further simplified by adapting elastic tensor from Hooke's 

law, which has form: 

 ( )2

3
m
ijkl M ij kl ik jl il jkc K G Gδ δ δ δ δ δ

 
= − + + 
 

 (3.15) 

so one can obtain: 

 
( ) ( )

( )

2
ijij ijkl

2

δfm m m m
kk kk kk

m ff
kk kk

M M c

M M

σ α φ ε α φ φ ε ε

σ α φ φ ε φ ε

+ = − + −


= − +
 (3.16) 

Where 
eff m m
ij ijkl klcσ ε=

 
can be denoted as effective stress. 

Now we can express equations (3.16) in terms of the variation of fluid content 

( )f m
kk kkς φ ε ε= − −  and the total stress m f

ij ijijσ σ σ δ= + , thus obtaining
 

 
( )

eff
ij ij

m
k

ij

k

p

p M

σ α δ

ς ε

σ

α= −

−=
 (3.17) 

which is final form of the poroelastic constitutive laws for isotropic case. 

Relation (3.17) can be modified using w , where w  can be expressed by means of 

variation of fluid content i iwς = − ∂ , which then gives: 

 

( )

2
2

3ij M ij ijij kk

m
i

m m

i kk

G K G p

p M w

σ ε ε δ α δ

α ε

 
= + − 

 

− = ∂ +

−
 (3.18) 

where 
2

3MK G−  is equal to drained Lame's coefficient Mλ . 

Partial summary: Relation (3.17) represents isotropic constitutive equations for porous media.

4 Equation of motion 

To obtain equation of motion we must at first define density of kinetic and potential energy 

together with dissipation energy, which afterwards insert into the Lagrangian equation, 

following work of Bourbié (1987). 
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4.1 Dissipation 

Processes of dissipation in this chapter are assumed to result only from the relative movement 

of solid and fluid. In the neighborhood of equilibrium, vector i
w�  and the dissipative force jX  

are linked by a linear equation such as: 

 1
iji jXbw
−=�  (4.1) 

Based on (4.1), a dissipation pseudo-potential ⅅ can be introduced, which is a positive 

definite quadratic form of representative matrix ijb , such that: 

 
1

2 i
T
iji bw w= � �D  (4.2) 

For isotropic porous material the off-diagonal elements in the ijb  tensor are zero for i j≠  and 

the diagonal elements are identical, so the common form is obtained:  

 21

2 ij ib w= �D  (4.3)   

We can present derivation of classic Darcy's law (in steady-state conditions) from Navier-

Stokes microscopic equations for fluid of viscosity η , by making an analogy with Poiseuille's 

law. This gives rise to the expression of the hydraulic permeability in the form  

 b
η

κ
=  (4.4)  

where κ , the absolute permeability, depends only on geometry of the porous media. 

Considering flow with at sufficiently low velocity we can write Darcy's law as:  

 i iX w
η

κ
= �  (4.5) 

4.2 Kinetic energy 

The kinetic energy C  of the system per unit volume may be expressed as: 

 2 2
i i i i i i

u uw w

u u u w w w
C

t t t t t t
ρ ρ ρ

∂ ∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂
 (4.6) 

This expression is based on the assumption that the material statistically isotropic. The 

specific case when the relative movement between fluid and solid is completely prevented in 

some way (i.e. 0iw =� ), serves to identify uρ
 
in equation (4.6) as:  

 ( )1u s fρ ρ φ ρ φ ρ= = − +  (4.7) 
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The terms uwρ
 
and wρ

 
will be identified subsequently. Moreover, after defining new 

parameters 12ρ  in chapter "Propagation of P and S wave" we will be able to rewrite (4.6) in 

these terms as 

 

( )

12

1 1
1

2 2

1

2

i i i i
s f

i i i i

u u U U
C

t t t t

U u U u

t t t t

φ ρ φ ρ

ρ

∂ ∂ ∂ ∂
= − + −

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂  
− −  

∂ ∂ ∂ ∂  

 (4.8) 

where kinetic energy is now expressed as the sum of the kinetic energy density of the solid, 

kinetic energy density of the fluid and  the kinetic energy density due to the relative motion of 

an additional apparent fluid mass arising from the inertial drag of the fluid. 

4.3 Potential energy 

If we assume only small disturbances, the expression of U  can be limited to the quadratic 

terms. The assumptions of isotropy implies that this expression involves the first two 

invariants of strain tensor m
kkε  and m

ijε , as well variation of fluid content ς . One can therefore 

write:  

 ( ) 222 2 2ij ijkk k
m m m m m

M k kkU G MM Mλ ε ε εα ε α ε ς ς+ − ++=  (4.9) 

For 0α ς= = , the single-phase case can be obtained. 

4.4 Hamilton's principle 

The dynamic behavior of homogenous system in space, including continua, can be specified 

by a single function, a Lagrangian density L, which is a function of, say, n  local dependent 

variables 1 2, , nq q q……
 
and their first derivatives ,,i i jq q� . Generally there is no direct 

dependence of L on the independent variables jx  and t ;  there is only an indirect dependence 

since ,, ,i i i jq q q�
 
are functions of t  and jx . In our case we have to add component 

responsible for dissipative potential ⅅ depending on iq� . 

Hamilton's principle (for example see Achenbach 1975) states that of all paths of motion 

between two instants 1t  
and 2t , the actual path taken by the system is such that integral over 

time and space of the Lagrangian density L  and of the work of the dissipated forces is 

stationary. 

If we use Lagrangian equation  
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,

0
i j i j i it q x q q q

∂ ∂ ∂ ∂ ∂ ∂
+ − + =

∂ ∂ ∂ ∂ ∂ ∂� �

DL L L
 (4.10)   

where i iq u=  or iw  in our case. The application of (4.10) by using expressions (4.3), (4.6) 

and (4.9) for isotropic case, leads to equation of motion: 

 
,

,

ij j i uw

i uw

i

i iw i

w

w

u

p u b w

σ ρ ρ

ρ ρ

= +

− = + +

��

� ��� �

��
 (4.11) 

Relation (4.11) represents equations of motion. To identify still unknown parameters uwρ  and 

wρ  we can use several assumptions. 

If there is no relative fluid movement with respect to the solid movement (i.e. 0iw = ), 

the first equation is reduced to the equation of movement in solid, while the second is reduced 

to the equation of movement of a fluid, thus uw fρ ρ= . Now if the fluid is the rest 

( )i iw uφ= − ,  the second equation is reduced to: 

 ( ),i f w i ip u b uρ ρ φ φ− = − −�� �  (4.12) 

This shows that, if overall acceleration occurs, a force must be exerted on the fluid to prevent 

average displacement. For its inertial part, this coupling force is:  

 ( )f w iuρ ρ φ− ��  (4.13) 

To describe this coupling effect, similar to the mass effect added in the analysis of the 

movement of an obstacle in a fluid, it is usual to establish parameter tortuosity T , such that: 

 w f

T
ρ ρ

φ
=  (4.14) 

The tortuosity T  was introduced in chapter one and it is related not only to porosity but also 

to the geometry of the medium where the flow occurs. If T  tends toward 1 as φ  tends towards 

1, the medium will be reduced to a fluid. We have to point out, that the way in which this 

limiting case is reached does not only depend upon the way φ  tends towards 1, but especially 

upon the geometry of the porous medium. The tortuosity is determined by Berryman's (1980) 

method using 

 ( )1 1 1T r φ= − −  (4.15) 

where r  is a factor to be evaluated from a microscopic model of the geometry of the frame. 

For the case of solid spherical grains 
1

2
r = . 

Equations (4.11) are thus written as: 
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,

,

ij j i

i f i f

i

i i

fu

T
p

w

wü b w

σ ρ ρ

ρ ρ
φ

= +

− = + +

�

��

�

�

��

 (4.16) 

Relations for pore pressure p  and total stress ijσ  in equation (4.17) are from chapter three 

denoted as: 

 
( )

m m
ij ijijkl kl

m
kk

c p

p M

σ ε α δ

ς α ε

= −

= −
 (4.17) 

Make a partial summary: Equations of motion (4.17) and constitutive equations (4.18) 

describe isotropic poroelastic wave propagation at low frequencies. 

5 Propagation of S and P wave  

In this chapter we will analyze wave propagation of S and P waves following works of Biot 

(1956) and Bourbié (1987), using equations of motion (4.16). 

The introduction of the equations of stresses as a function of displacement iu  a iU  in 

equation (4.16) yields the equations of motion in the form: 

 
( )

( )
11

12

2 j i i j i i ijk j klm

i

l m i

i i

G u U u

u

G

U

u

U

λ ε ε ρ

ρ β

+ ∂ ∂ + ∂ ∂ − ∂ ∂ =

+ + −

�

�� �

�

�

¢
 (5.1) 

 ( )12 22ij i i j ii i iiu R U u U Uuρ ρ β∂ ∂ + ∂ ∂ = + − −���� ��¢  (5.2) 

in which we noted: 

 

( )

( )

( )

( )

2
0

2

11

12

22

2

2

1

f

f

f

M M

M

R M

T

T

T

λ λ α φ

φ α φ

φ

ρ ρ φ ρ

ρ φ ρ

ρ φ ρ

η φ
β

κ

= + −

= −

=

= − −

= −

=

=

¢

 (5.3) 

Note that (5.1, 5.2) can be written for the limit cases of the perfect fluid and the solid. In fact, 

if the medium is a perfect fluid, the set of parameters to be considered is 1Tφ α= = =   

and 0G β= =  ( ), 0κ η→ ∞ = . Equation (5.1) disappears and equation (5.2) gives the 

dynamic equation of perfect fluid under the assumption of small displacement:  
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 i ij i fM u Uρ∂ ∂ = ��  (5.4) 

It should be noted that equation (5.1) disappear naturally and not by assuming i iU u= .  

Now, if the medium consists only of solid phase, letting 

0, ,M Tα φ λ λ= = = → ∞ , Eq. (5.2) then gives  

 ( )0 i if if iu U uT T Uφ ρ φ ρ β= − + − −���� ��  (5.5) 

while equation (5.1) gives:  

 
( )

( )

2 j i i ijk j klm l m m i f i

f i iiu

G u G u u T u

T U U

λ ε ε ρ φ ρ

φ ρ β

+ ∂ ∂ − ∂ ∂ − =

− + −

��

�

��

�� �
 (5.6)  

Equation (5.6) is clearly the equation of the dynamics of elastic solids, since the second 

member is cancelled owing to (5.5). 

5.1.1 Existence of S wave 

Let us first examine the case without dissipation ( )0β =
 
for the shear wave (S wave) or 

isovolumetric wave ( )0i i i iu U∂ = ∂ =  such that: 

 

1

2

ijk j k

ijk j k

i

i

u

U

ε

ε

= ∂ Λ

= ∂ Λ
 (5.7) 

Equation (5.7) introduced into (5.1, 5.2) becomes  

 

1 1
2

12 1 2

22

1
0i j j i

I

i i

V

ρ

ρ

∂ ∂ Λ − Λ =

 
− Λ Λ 
 
 

=

��

�� ��

 (5.8) 

where velocity IV  is given by: 

 

1
2

2
12

11
22

I

G
V

ρ
ρ

ρ

 
 
 

=  
 

− 
 

 (5.9) 

Since the fluid does not respond to the shear forces, it only influences the shear wave through 

inertial effects. 
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5.1.2 Existence of P waves 

Now let us examine the dilatational waves without dissipation ( )0β =  and such that: 

 
1

2

i i

i i

u

U

= ∂ Φ

= ∂ Φ
 (5.10)   

These waves correspond to dilatational waves (P waves) that are irrotational

( )0ijk j klm l m ijk j klm l mu Uε ε ε ε∂ ∂=∂ =∂ . By introducing (5.10) in (5.1, 5.2) with 

( )0β = , the following equations are obtained:  

 
( ) 1 2 1 2

11 12

1 2 1 2
12 22

2 0

0

j j j j

j j j j

G

R

λ ρ ρ

ρ ρ

+ ∂ ∂ Φ + ϒ ∂ ∂ Φ − Φ − Φ =

ϒ ∂ ∂ Φ + ∂ ∂ Φ − Φ − Φ =

�� ��

�� ��
 (5.11)  

It is convenient to establish reference velocity DV , defined by  

 2 λ 2 R 2
V

ρD

G+ + +
=

¢
 (5.12) 

where 
 11 12 222ρ ρ ρ ρ= + +  (5.13) 

Velocity DV  represents dilatational wave in (5.11) under the condition i iu U= . It is 

convenient introduce non-dimensional parameters:  

 

11 22 12
11 22 12

11 22 12

ρ ρ ρ
γ , γ , γ

ρ ρ ρ

λ 2 R
θ , θ , θ

λ 2 R 2 λ 2 R 2 λ 2 R 2

G

G G G

= = =

+
= = =

+ + + + + + + + +

¢

¢ ¢ ¢

 (5.14) 

The ijθ -parameters define the elastic properties of the material while the ijγ -parameters 

define its dynamic properties. It can be shown that (5.14) parameters satisfy following 

identity:  

 11 12 22 11 12 22γ 2γ γ θ 2 θ θ 1+ + = + + =  (5.15) 

With these parameters equation (5.11) becomes: 

 

( ) ( )

( ) ( )

2
1 2 1 2

11 12 11 122 2

2
1 2 1 2

12 22 12 222 2

1
θ Φ θ Φ γ Φ γ Φ

tV

1
θ Φ θ Φ γ Φ γ Φ

tV

j j

j j

D

D

∂
∂ ∂ + = +

∂

∂
∂ ∂ + = +

∂

 (5.16)  

Solutions of these equations can be written in the form: 
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( )

( )

1
10

2
20

Φ Φ exp i k x ω t

Φ Φ exp i k x ω t

= +  

= +  

 (5.17)  

The velocity V of these waves can be expressed as: 

 
ω

V
k

=  (5.18) 

After substituting expressions (5.17) into (5.16) and denoting parameter z  as  

 
2

2

V
z

V

D
=  (5.19) 

we will obtain: 

 
( )
( )

11 10 12 20 11 10 12 20

12 10 22 20 12 10 22 20

z θ Φ θ Φ γ Φ γ Φ

z θ Φ θ Φ γ Φ γ Φ

+ = +

+ = +
 (5.20)  

Eliminating 10Φ
 
and 20Φ

 
yields an equation for z :  

 
( ) ( )

( )

2 2
11 22 11 22 22 11 12 1212

2
11 22 12

θ θ θ z θ θ θ γ 2 θ γ z

γ γ γ 0

− − + − +

− =
 (5.21) 

This equation has two roots 1 2,z z  corresponding to two velocities of propagation 1 2,V V  

 

2
2

1
1

2
2
2

2

V
V

z

V
V

z

D

D

=

=

 (5.22) 

There are therefore two dilatational waves. The roots 1 2,z z  are always positive, since the 

matrices of coefficients ,γ θ  of equations (5.20) are symmetric and are associated with 

positive definite quadratic forms representing respectively the potential and kinetic energies. 

For more detailed analysis (Biot 1956), it can be shown that one of the characteristic 

movements corresponds to a movement in which solid and fluid displacements are in phase, 

and the second to a movement in which the displacements are out of phase. The wave that 

corresponds to the relative movement case is known as the slow wave or the wave of the 

second kind. This terminology derives from the fact that the associated velocity 1V  is much 

lower than the velocity 2V  of the in-phase movement wave called wave of the first kind. Wave 

with velocity 2V  corresponds to classic P-wave, which can be noticed in the absence of fluid 

(Bourbié 1987). 
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5.1.3 Wave velocities and attenuations 

As in the case of no attenuation, we may separate the equations (5.1) and (5.2) into rotational 

and dilatational waves, but first we must introduce characteristic frequency, denoted as: 

 
( )c

12 22

f
2 π ρ γ γ

β
=

+
 (5.23) 

Applying the divergence operator to (5.1, 5.2) we have the equations for dilatational waves: 

 

( ) ( ) ( )

( ) ( )

2
1 2 1 2 1 2

11 122

2
1 2 1 2 1 2

12 222

λ 2 μ ρ ρ
tt

R ρ ρ
tt

j j

j j

β

β

∂ ∂ ∂ ∂ + Φ + Φ = Φ + Φ + Φ − Φ
  ∂∂

∂ ∂ ∂ ∂ Φ + Φ = Φ + Φ − Φ − Φ  ∂∂

¢

¢

 (5.24) 

Likewise, applying the curl operator, we will find the equation for rotational waves: 

 

( ) ( )

( ) ( )

2
1 2 1 2 1

11 122

2
1 2 1 2

12 222

ρ ρ
tt

ρ ρ 0
tt

i ji i i i j

i i i i

Gβ

β

∂ ∂
Λ + Λ + Λ − Λ = ∂ ∂ Λ

∂∂

∂ ∂
Λ + Λ − Λ − Λ =

∂∂

 (5.25) 

Let us first examine a rotational plane wave propagating in the x-direction, then solutions of 

equations (5.25) are written in the form: 

 
( )

( )

1 1

2 2

exp i k x ω t

exp i k x ω t

i

i

Λ = Λ +  

Λ = Λ +  

 (5.26) 

Substitution in equations (5.26) and elimination of the constants 1Λ  and 2Λ  yield the relation 

 
2

Re Im2

k
E i E

ρ ω

G
= −  (5.27) 

with  

 

( )

( )

22
11 22 12

22 2
c12 22

Re 2 2
22

12 22 c

12 22
c

2 2
2

Im

2

12 22 c

γ γ γ
1 γ

γ γ
E

γ
1

γ γ

γ γ

E
γ

1
γ γ

f

f

f

f

f

f

f

f

 −
+   

+  
=

   
+    

   +   

 
+  

 
 =

   
+       +   

 (5.28) 
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the frequency of the wave is ω 2πf = . Assuming, that k  is complex 

 Re Imk k i k= +  (5.29) 

indicates, that phase velocity of rotational wave has form: 

 r
Re

ω
v

k
=  (5.30) 

We can establish a reference velocity 

 

1

2
r

μ
V

ρ

 
=  
 

 (5.31) 

which is the velocity of rotational waves, if there is no relative motion between fluid and 

solid. We derive from (5.27) using (5.28), (5.29), (5.30), that: 

 

( )
1

2
ReRe Im

r

r
2 2

v 2

V
E E E

=

 
  

+ +

 (5.32)   

This velocity ratio is a function only of the frequency ratio cf f
 
and the dynamic parameter 

ijγ . From relation (5.29) it is evident, that ik  is attenuation coefficient of the rotational wave. 

We can introduce a reference length 

 r
r

c

V
L

2 fπ
=  (5.33)  

Introducing (5.28), (5.29), (5.33) into (5.27), one can obtain:  

 
( )2 2

1

2
ReRe m

Im
c r

IE E E
k

2 L

f

f

+ −
 
  =  (5.34) 

Using (5.29) and (5.26) can be shown that  the amplitude of the wave as a function of the 

distance x  is proportional to Imexp ( k )x−
 
while the real part is related to the phase velocity 

rv  as we have shown earlier. 

We now consider P-waves. They are governed by equation (5.24). Again we consider 

plane waves and express solutions of (5.2) as:  

 
( )

( )

1
10

2
20

Φ Φ exp i k x ω t

Φ Φ exp i k x ω t

= +  

= +  

 (5.35) 

Introducing the solution (5.35) into the propagation equations (5.24) and eliminating the 

constants 10Φ  and 20Φ  we obtain 
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( ) ( )

( )

4 2
2

11 22 124 2

2
2

11 22 12 2

k k
λ 2 μ Rρ λ 2 μ ρ 2 ρ

ω ω

i k
ρ ρ ρ λ 2 μ R 2 ρ 0

ω ω

β

   + − − + + −  

  
+ + + + + − =   


−

 

¢ ¢

¢

 (5.36) 

With the variables already presented in (5.14) this equation may be written in non-

dimensional form  

 
( ) ( )

( ) ( )

2 2
11 22 22 11 11 22 12 1212

2
11 22 12

θ θ θ z θ γ θ γ 2 θ γ z

i
γ γ γ z 1 0

ωρ

β

− − + − +

+ − + − =
 (5.37) 

with 

 
2

2
2

k
z V

ω
D=  (5.38) 

In this case k  is complex and therefore z  is also complex. If we put 0β =  in equation 

(5.36) we obtain (5.21) whose roots are 1 2,z z . With these roots (5.37) might be rewritten as

  

 ( ) ( ) ( )1 2z z z z i M z 1 0− − + − =  (5.39) 

where  

 
( )2

11 22 12

M
ω ρ θ θ θ

β
=

−
 (5.40) 

The roots of equation (5.39) yield the properties of the dilatational waves as a function of a 

frequency variable M  and two parameters 1 2,z z  which correspond to the velocities of the P 

waves without attenuation, as given by equation (5.22). We may rewrite M  in terms of cf f  

as: 

 
( )

( )
12 22c

2
11 22 12

γ γ
M

θ θ θ

f

f

+
=

−
 (5.41) 

Variables Iz
 
and IIz  denotes the roots of relation (5.41). Root Iz

 
corresponds to waves of 

the first kind while IIz
 
corresponds to waves of the second kind. Following equations can be 

obtained:  

 
( )

( )

1
2I I I

1

2II II II

z i

z i

= +

= +

N J

N J

 (5.42) 
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The phase velocity Iv  of the waves of the first kind is given by:   

 
I

I

v 1

VD

=
N

 (5.43)   

Attenuation coefficient of the wave of the first kind is given by 

 { } I
I

c cL
Im k

f

f
=
J

 (5.44) 

where cL  is a characteristic distance given by:  

 cL
2

VD

cfπ
=  (5.45)  

The phase velocity and attenuation of the wave of the second kind similarly become: 

 
II

II

v 1

VD

=
N

 (5.46) 

 { } II
II

c cL
Im k

f

f
=
J

 (5.47) 

Partial summary: We have shown by presenting work of Biot (1956) in this chapter, that there 

are two P waves and one S wave propagating through poroelastic media in contrast of elastic 

one, where only one P wave and one S wave are induced. Moreover, we were able to present 

derivation of velocities for these waves, together with attenuation coefficients. 

6 Seismic prospection 

In this chapter we will focus our attention on seismic prospection, following and presenting 

work of de la Puente (2008). Method of seismic prospection uses waves at low- and high-

frequencies ranges. The limit between high- and low-frequency ranges is defined by Biot's 

characteristic frequency: 

 min
f

Bf
T

η φ

κ ρ

 
=  

 
 

 (6.1) 

Equations of motion derived in chapter four are only valid at low frequencies (e.g. seismic 

frequencies), where fluid flow in pores is laminar (Poiseuille flow) and b  is given by (4.4). 

Physically, at low frequencies Bf f≤  Biot's theory states that the wave of second kind 

becomes extremely dissipative. For homogenous media the wave types propagating in a 

poroelastic material at low-frequencies are almost indistinguishable from those in a single-

phase medium properly attenuated. Low-frequency case has been already discussed in 
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previous chapters five and four, therefore we will only focus on high-frequency range seismic 

prospection. For high frequencies it is required to introduce viscodynamic operator. This 

problem will be analyzed in section 6.2, but at first we will introduce anisotropy into 

constitutive equations (3.17) in section 6.1. 

6.1 Anisotropy 

At first we must introduce ( )m
kkp M ς α ε= −  into first equation of (3.17). Now, constitutive 

equation (3.17) can be extended to general anisotropic case, written in matrix-vector form as

  

 i ij jNσ ε=
��

 (6.2) 

where  

 ( ), , , , , ,i xx y y z z y z xz x y pσ σ σ σ σ σ σ= −
�

 (6.3)  

 ( ), , , , , ,j xx y y z z y z xz x yε ε ε ε ε ε ε ς= −
�

 (6.4)  

and 

 

111 12 13 14 15 16

212 22 23 24 25 26

313 23 33 34 35 36

414 24 34 44 45 46

55515 25 35 45 56

26 616 36 46 56 66

1 2 3 4 5 6

u u u u u u

u u u u u u

u u u u u u

u u u u u u
ij

u u u u u u

u u u u uu

c c c c c c M

c c c c c c M

c c c c c c M

N c c c c c c M

c c c c c c M

c c c c c c M

M M M M M M M

α

α

α

α

α

α

α α α α α α







=























 (6.5)  

Entries of the matrix (6.5) are u m
i jij ijc c M α α= + , which are called components of the 

undrained stiffness tensor. Undrained stiffness tensor composes of m
ijc

 
the components of the 

elastic Hooke's tensor of the solid matrix, iα
 
the generalized Biot-Willis's effective stress 

coefficients and M  the Biot's modulus. Parameters iα
 
and M  are denoted as:  
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

1 11 12 13

2 12 22 23

3 13 23 33

4 14 24 34

5 15 25 35

4 16 26 36

11 22 33 12 13 23

1 3

1 3

1 3

3

3

3

1 1

1
2

9

S

S

S

S

S

S

S

S S F

c c c K

c c c K

c c c K

c c c K

c c c K

c c c K

K
M

K K K K

K c c c c c c

α

α

α

α

α

α

φ

= − + +

= − + +

= − + +

= − + +

= − + +

= − + +

=
− − −

 = + + + + +
 

 (6.6) 

Derivation of relation (6.6) are presented in Appendix A. 

6.2 Wave propagation at high frequencies 

As we mentioned earlier equation of motion (4.17) won't be valid anymore for high 

frequencies. It is necessary to introduce viscodynamic operator in term involving b . A 

general high-frequency viscodynamic operator can be defined in the anisotropic case as 

 ( ) ( ) ( )f i
i i

T
t t b t

ρ
δ

φ
Ψ = +  (6.7) 

where parameter iκ  is anisotropic permeability, iT  is anisotropic tortuosity of the solid matrix 

in the principal directions and ( )ib t  is dissipation operator. Unfortunately the viscodynamic 

operator (6.7) is very sensitive to the pore structure and therefore frequency dependence for 

each material must be analyzed separately. A way around this problem is substituting the 

convolutional products by a Generalized Maxwell Body. Thus, a phenomenological 

attenuating law can be used fitted to the experimentally observed wave dispersion for a given 

material in the high frequency range (de la Puente 2008). Dissipation operator ( )ib t  can be 

expressed by relaxation function ( ) ( )i
tχ  for GMB in the following manner 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1 1 l
n

tii
i l

i i l

b t t H t Y e H t
ωη η

χ
κ κ

−

=

 
= = − − 

  
∑  (6.8) 

Equations (4.17) then can be written as: 

 
,

,

f iij j i

i f i i i

u

p ü

w

w

σ ρ ρ

ρ= ∗

= +

− + Ψ

��

��

��
 (6.9) 

where ∗  denotes convolutional product in time. 
Introducing (6.7) and (6.8) into (6.9), one can obtain:  

 
( )

,

,

ij j i

f i
i

f

f ii

i

i i

w

w b t w

u

T
p ü

σ ρ ρ

ρ
ρ

φ

=

= + ∗

+

− +

���

� ��

�

�
 (6.10) 

We present series of properties for the Dirac's delta function ( )tδ  and Heaviside function 

( )H t , which can be summarized as follows: 

 Property 1: ( ) ( ) ( )f t t f tδ∗ =  

 Property 2: 
( )

( )
H t

t
t

δ
∂

=
∂

 

 Property 3: ( ) ( ) ( ) ( )0f t t f tδ δ=  

 Property 4: ( ) ( ) ( )
t

f a H t a f a d a
∞

− ∞ − ∞
− =∫ ∫  

 Property 5: ( )
( ) ( )

( )
g t f t

f t g t
t t

∂ ∂   
∗ = ∗   

∂ ∂   
 

Using properties 1-5 second equation (6.10) can be rewritten into form: 

 

( ) ( ) ( )

1

l

f i i
f i

i i

tn
ti

l il
i l

T wp u
w

x t t

Y w e d
ω τ

ρ η
ρ

φ κ

η
ω τ τ

κ

− −

= − ∞

∂∂ ∂
− = + + −

∂ ∂ ∂

∑ ∫

��
�

�

 (6.11) 

It is convenient to introduce a set of anelastic-dynamic variables in vector form 

( ), ,
T

l l l l
x y zϑ ϑ ϑ ϑ=

�
as: 

 ( ) ( )l

t
tl

l ii w e d
ω τ

ϑ ω τ τ
− −

− ∞

= ∫ �  (6.12) 

This leaves the dynamic equations as: 
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 ( )

1

n
f i i i l

f i il
i i i l

T wp u
w Y

x t t

ρ η ν
ρ ϑ

φ κ κ =

∂∂ ∂
− = + + −

∂ ∂ ∂
∑

��
�  (6.13) 

For anelastic variables we have equation: 

 ( ) ( ) ( ) ( )l l
l l ii it t t w t

t
ϑ ω ϑ ω

∂
+ =

∂
�  (6.14) 

It should be noted, that the Fourier transform of (6.7) collapses for 0ω →  into: 

 ( ) ( )f i
i

i

T
t H t

ρ η
δ

φ κ

 
Ψ = +  

 
 

 (6.15) 

 After adapting this relation to (6.9) and using series of properties 1, 2 and 5 we will obtain: 

 

,

,

f iij j i

i
i f i f i i

i

u

T
p ü

w

w w

σ ρ ρ

η
ρ ρ

φ κ

= +

− = + +

��

��

��

�
 (6.16) 

If we use isotropic permeability κ  and isotropic tortuosity T  instead of anisotropic ones, 

relation (6.16) becomes the same as (4.17). Thus operator (6.7) is consistent also for the low-

frequency case. In addition, operator (6.15) is identical to (6.7) for any frequency, in the 

inviscid case ( )0η = . 

Combining together equations (6.14), (6.11), (6.2) and first equation of (6.9) provides 

governing equations for wave propagation in porous media as an inhomogeneous linear 

hyperbolic system of 13 3vn n= +  first-order partial differential equations that can be 

expressed in the matrix-vector form 

 
p q q q

pq pq pq pq q

Q Q Q Q
A B C E Q

t x y z

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
� �� �  (6.17) 

where ( ), 1, , 13p q ∈ �  denote the elastic part and ( ), 14, ,p q n∈ � , denote the 

anelastic part of the system. Note, that classical tensor notation is used in equation (6.17), 

which implies summation over each index that appears twice. The vector Q
�

, containing 13 

poroelastic variables and 3n  anelastic-viscodynamic variables, and space-dependent Jacobian 

matrices , , ,pq pq pq pqA B C E� �� �  are explicitly given as 

(

)1 1 1

, , , , , , , , , , , , ,

, , , , , ,

x x y y z z x y xz x z x y z x y z

n n n
x y z x y z

Q p u u u w w wσ σ σ σ σ σ

ϑ ϑ ϑ ϑ ϑ ϑ

=
�

� � � � � �

…

 (6.18) 

 
0 0 0

, ,
0 0 0p q p q p q

a a a

A B C
A B C

A B C

     
= = =     

    

� ��  (6.19) 
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where , , v vn n

pq pq pqA B C
×

∈� �� �  containing matrices 13 13, ,A B C
×∈ �  responsible for 

poroelastic part, and 3 13, , n
a a aA B C

×∈ �  responsible for anelastic part. Matrices 

, , , , ,a a aA B C A B C  have form 

 

( )

( )

( )

( )

( )

111 16 15

212 26 25

313 36 35

616 66 56

414 46 45

55515 56

1

1 1
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0 0 0 0 0 0 0 0 0 0 0 0
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α

α
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ρ ρ

ρ

ρ
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1 6 5

2

2 2

2

2
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1
0 0 0 0 0 0 0 0 0 0 0

1
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1
0 0 0 0 0 0 0 0 0 0 0 0

x x

y

z

M M M Mα α α

β

ρ ρ

ρ

ρ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− − − − 
 
 
 
 
 
 
 
 
 
 
 

 (6.20) 
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( )

( )
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 
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 (6.21) 
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 
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 
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 
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 
 
 
 
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 
 
 

− − − − 
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 
 
 
 
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 
 
 

 (6.22) 
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1 1 1

, ,a a a

n n n

A B C

A B C

A B C

     
     

= = =     
     
     

� � �  (6.23) 

where entries ( ) ( ) ( ) ( )1 2 1 2, , ,i i i iρ ρ β β  of matrices , ,A B C  has form: 

 

( ) ( )

( ) ( )

1 1

2 2

,

,

f i ii i

f i fi

T T

T

ρ ρ φ ρ β φ

ρ ρ ρ φ β ρ ρ

= − =

= − =

 (6.24) 

Matrices , ,a a aA B C  contain sub-matrices 3 13, ,l l lA B C
×∈ � , with 1, ,l n= … , in the 

form 

 

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
l lA ω

− 
 

=  
 
 

 (6.25) 

 

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0
l lB ω

 
 

= − 
 
 

 (6.26) 

 

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
l lC ω

 
 

=  
 − 

 (6.27) 

where lω  is the relaxation frequency of the l -th mechanism. 

The reaction source in (6.17), which couples the anelastic functions to the original elastic 

system can be represented by matrix E�  in the form 

 v vn nE E
E

E E

×′ 
= ∈ ′′ ′′′ 
� �  (6.28) 

where 13 13
E

×∈ �  has a structure: 
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 
 
 
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 

 (6.29) 

The matrix E′  from relation (6.28) has the block structure 

 ( ) 13 3
1, , n

nE E E ×′ ′ ′= ∈… �  (6.30) 

where each matrix 13 3
lE

×′ ∈ � , with 1, ,l n= … , contains the elastic-dynamic coefficients  

( )i
lY  of the l -th mechanism in the form 
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 (6.31) 

The matrix E′′′  in (6.28) is a diagonal matrix and has a structure 

 
1
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n n
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� �  (6.32) 

where each matrix 3 3
lE

×′′′ ∈ � , with 1, ,l n= … , is itself a diagonal matrix containing only 

the relaxation frequency lω  of the l -th mechanism on its diagonal, i.e. l lE Iω′′′ = − ⋅  with  

3 3
I

×∈ �  denoting the identity matrix. 

Finally the E ′′  block in (6.28) has a form 

 

1
3 13n
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×
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 ′′
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� �  (6.33) 

where each sub-matrix 3 13
lE

×′′ ∈ � , with 1, ,l n= … , contains the relaxation frequency lω  

of the l -th mechanism in the form 
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l lE ω
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 (6.34) 

7 Attenuation of seismic waves 

In this chapter we will present derivation of equations of motion, which contain expression 

responsible for attenuation of seismic waves due to anelasticity of the frame. It should be 

noted, that these dissipation and attenuation processes are not caused by viscous resistance to 

fluid flow. Here is introduced only dissipation phenomena of mechanical, chemical or 

thermomechanical nature, associated with the anelasticity of the frame, which are usually 

taken into account by introducing a viscoelastic rheology. 

From chapter three and four we know, that constitutive equations and equations of 

motions have following structure: 
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 (7.2) 

As we mentioned earlier relation (7.2) is only valid at low frequencies. Our interest is to study 

wave propagation in porous material at seismic frequency, which belongs to low-frequency 

range according to O’Brien (2010) and Masson (2007). Unfortunately, constitutive equations 

(7.1) do not contain attenuation controlled by the anelasticity of the frame, therefore we have 

to introduce viscoelastic rheology. 

New form of relation (7.1) may be obtained by introducing some of the parameters 

mentioned in chapter three and four: 
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where 

 , 1
1
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K K K K K
α

φ φ
= = −

− − +
 (7.4) 

At this point we can make same assumption as Morency (2008), that only the time-

dependence of the bulk and shear moduli of the frame, MK  and G , needs to be considered, 

accommodating the fact that various forms of energy dissipation may occur at grain contacts. 
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In practice, attenuation in the Earth is mainly controlled by the shear quality factor, such that 

only the time dependence of the isotropic shear modulus G  need be accommodated. 

For modelling a variety of dissipation mechanisms related to the skeleton-fluid 

interaction we will use rheological model of General Maxwell body, which based upon using 

linear combinations in parallel of so-called Maxwell Bodies, essentially a spring and a 

dashpot connected in series. 

Then we can express constitutive equations (7.1) as: 
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∑  (7.5) 

The anelastic functions (Moczo 2014) are solutions of the differential equations 

 ( ) ( ) ( ) , 1, ,ij ij
l l ijl lt t t l n

t
ζ ω ζ ω ε

∂
+ = =

∂
…  (7.6) 

The equal-index summation convention applies to spatial index k  but does not apply to 

subscript l . For n  characteristic frequencies lω  we have n  anelastic coefficients G
lY .  

Make partial summary: Equations of motion (7.1) and constitutive equations (7.5), 

together with differential equations (7.6) for anelastic functions generate system of equation 

describing wave propagation of seismic waves in poroelastic medium with anelastic frame. 

8 Algorithmical preparation 

This last chapter is devoted to algorithm preparation of theory of poroelasticity for modelling 

of seismic propagation using finite-difference method in 3D. We are going to express our 

constitutive equations and equations of motion in velocity-stress formulation. Numerical 

scheme uses uniform staggered space-time grid and it is a nd2 -order accuracy in time and nd4

-order accuracy in space. 

The explicit expression of the constitutive equations (3.18) and poroelastic wave 

equations (4.16) can be written in velocity-stress formulation in 3D case as 
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where , ,x y zV V V  and , ,x y zW W W  are solid particle velocities and relative solid to fluid 

velocities. 

In order to discretize the equations of motion (8.2) on staggered grids for finite-difference 

algorithms, we rewrite the equations into the following form 
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Denote the discrete grid values of the particle velocity components , , , , ,x y z x y zV V V W W W  by 

, , , , ,VX VY VZ WX WY WZ . Similarly denote the stress-tensor components 

, , , , ,xx yy zz xy xz yzσ σ σ σ σ σ  by , , , , ,TXX TYY TZZ TXY TXZ TYZ  and pore pressure p  by  

P . Figure 8 shows the staggered grid cell of (2,4) velocity-stress scheme. We may 

approximate the first of equation (8.3) at the time level m  and spatial position 

, 1 2, 1 2I K L+ +  
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It should be noted, that we assume smoothly and weakly heterogeneous isotropic poroelastic 

unbounded medium. For brevity we will only consider equations for ,x xV W  and ,xx pσ . The 

staggered format of equations (8.1) and (8.3) can be written as 

1 2 1 2,m m
VX WX

+ +

1 2 1 2,m m
VY WY

+ +
 

1 2 1 2,m m
VZ WZ

+ +
 

, ,m m mTXX TYY TZZ P

mTXZ  

mTXY  

mTYZ  

h/2 

Figure 8 Grid cell in the staggered grid. 
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 (8.7) 

where ( ) 1 2, 1 2, 1 2 1 2, 1 2, 1 2 1 2, 1 2, 1 21 2, 1 2, 1 2
, , , ,M I K L I K L I K L

I K L
G Mλ α+ + + + + + + + ++ + +

 

( ) , 1 2, 1 2, 1 2, 1 2
,f I K L

I K L
ρ ρ + ++ +

 are effective grid material parameters, defined as an integral 

harmonic averages: 
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 
 
 
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  

 
=  
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∫ ∫

∫ ∫ ∫

∫ ∫ ∫
 (8.8) 

Another parameters, such as , , ,Tφ η κ  are assumed to be homogenous. 

Relations (8.4), (8.5), (8.6), (8.7), (8.8), together with equations for 

, , , , , , , , ,TYY TZZ TXY TXZ TYZ VY VZ WY WZ  form velocity-stress scheme on staggered grid, 

that will be used for numerical simulation of seismic motion in our master thesis. 

Conclusions 

In this thesis we presented: 

• an introductory text on the theory of poroelasticity, starting by defining the poroelastic 

medium as a material containing pores that are typically filled with a fluid, 

• basic terms, parameters, assumptions and conditions, which are essential for derivation 

of constitutive equations and equations of motion, 

• derivation of the constitutive equations for isotropic and anisotropic poroelastic media, 

• derivation of the equations of motion for a poroelastic material at a low-frequency 

range on the base of Hamilton's principle, 

• demonstration of the existence of wave of second kind, also denoted as slow P wave, 

• behavior of one S wave and two P waves, together with derivation of velocities and 

attenuation coefficients for these waves, 
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• equations of motion in poroelastic media at high-frequency range using the General 

Maxwell body and viscodynamic operator, 

• implementation of mechanical attenuation into equations of motion at low frequencies, 

caused by anelasticity of the frame, 

• staggered-grid finite-difference scheme for numerical modelling of seismic motion. 

 

The presented material can serve a sufficient theoretical basis for possible future elaboration 

in the team of supervisor: 

• modification of the constitutive relations and equations of motion for the case of 

thermoporoelasticity to describe dynamic fault weakening mechanism, known as 

thermal pressurization of pore fluid, 

• numerical simulation of seismic wave propagation and earthquake motion for a  

poroviscoelastic model which makes it possible to account for attenuation due to 

anelasticity of the real Earth 's material, 

• combine Iwan model with poroelastic rheology. 

   

Appendix A 

 In this appendix we focus on the presentation of derivation of relations in equation (6.6). Let's 

begin with generalized Biot-Willis's effective stress coefficients ijα . 

In chapter four we have introduced effective stress-strain relation denoted as:  

 eff mm
ijklij klcσ ε=  (A.1) 

It should be noted, that equation (A.1) can be inverted to strain-stress equation related to m
ijkls , 

where m
ijkls  is the compliance tensor, which satisfy this condition: 

 ( )1

2ijkl klrs ir js is jrc s δ δ δ δ= +  (A.2) 

Now we can continue deriving formula for stress coefficient for anisotropic case. This proof is 

based on work of Cowin (2013) and Carcione (2001). 

Consider now a representative elementary volume of saturated porous medium. It is 

bounded by the outer surface 0S  and by inner surface pS
 
(pore boundaries). Let us consider 

the stress vector: 

 

0
0

p
p

on

on

ij ji

ii

t n S

t p n S

σ=

= −
 (A.3) 
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This stress acting on a cube of material (only a cross-section is visible) is illustrated in  . The 

pores in this porous media are represented by ellipsoids in the  .  

 

  

The first key to this proof is to treat the (B.3) as the superposition of two separate stresses 

 

0
0

p
p

on

on

ii

ii

t p n S

t p n S

= −

= −
 (A.4) 

and 

 

0
0

p
p

on

0 on

ij j ii

i

t n p n S

t S

σ= +

=
 (A.5) 

The situation for (A.4.) is illustrated in Figure A.4a). It corresponds to the unjacketed 

conditions where ext
p p= . It should noted, that the strain in the porous material is equivalent 

to strain in the matrix material. This means, that uniform straining of the matrix material 

results in the same straining of the pore space. We can illustrate this clearly by pointing out 

that the stress relation (A.4) of the solid is achieved by filling the pores with the matrix 

material. This is pictured in Figure A.4b). Replacing pores with the matrix material has 

created uniform cube in which the pressure everywhere is the same. Therefore there is no 

difference in the pressure and strain in Figure A.4a) and those in Figure A.4b. The conclusion 

that has just been drawn is independent of the shape, size, and connectivity between the pores. 

Thus, the pores of Figure A.4a) could all be of arbitrary shape and size and they could all be 

Figure A.3 Picture of total loading for a cube of material representing a mechanically loaded 
portion of a saturated anisotropic compressible poroelastic medium. 
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connected as shown in Figure A.4c), but the same pressure p  acts everywhere as well as the 

same homogeneous strain, just as in all three figures. 

 

The resulting strain for (A.4.) is related to the compliance tensor of the solid s
ijkls  

 (1) s
ij ijkkp sε = −  (A.6) 
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The second equation (A.5) looks like relation for stress vector under drained conditions at 

confining pressure ext
p p= , but there is also additional stress acting on material. The 

resulting strain of (A.5) has a form: 

 ( )(2) m
kl klij ijkls pε σ δ= +  (A.7) 

The total strain for dry material is then given by: 

 ( )(1) (2)m m m s
klij ij ij ijkl ijkk ijkks p s sε ε ε σ= + = + −  (A.8) 

The effective stress law is obtained by substituting equation (A.8) into equation (A.1), thus 

one can obtain: 

 ( )eff m m m s
mnij ijkl klmn klmm klmmc s p s sσ σ = + −

 
 (A.9) 

or 

 ( )eff m s
ij ij ij ijij ijkl klmmp c s pσ σ δ σ α= + − ≡ +  (A.10) 

where we used relation eff
ij ijij pσσ α δ−=  from chapter four. 

This equation provides the effective stress coefficient 
ijα  

in the anisotropic case: 

 m s
ij ij ijkl klmmc sα δ= −  (A.11) 

If the solid material is isotropic, 

 
3

kls
klmm

s

s
K

δ
=  (A.12) 

then relation (A.11) can be rewritten as: 

 ( )
1

3m
ij ij Sijkkc Kα δ

−
= −  (A.13) 

Equation (A.13) can be expressed as: 

 ( )
1

3m
I I sIJc Kα δ

−
= −  (A.14) 

where Iα  has a form: 

 ( )1 2 3 4 5 5, , , , , ,
T

Iα α α α α α α=  (A.15)   

From (A.15) we can obtain first 6 parameters of relation (6.6). 

For fluid-solid coupling Biot's modulus M  and bulk modulus K  for anisotropic case we 

need to rewrite second of equations (3.17) for anisotropic case as: 

 ( )m
ij kkp M ς α ε= −  (A.16) 
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using ( )f m
kk kkς φ ε ε= − −

 
under unjacketed conditions we will obtain: 

 ( )f m
kk kk

S F

p p

K K
ς φ ε ε φ

 
= − − = − − 

 
 

 (A.17) 

Strain tensor under unjacketed conditions has form: 

 
3

ijm
ij

S

p

K

δ
ε = −  (A.18) 

Substituting equations (A.17) and (A.18) into (A.16) results in: 

 

1

S

S
ii

F

K
M

K

K
α φ

=
  

− −      

 (A.19) 

Using first three equations from relation (6.6) and introducing them into (A.19), we will 

obtain: 

 

1 1

S

S

S F

K
M

KK

K K
φ

=
   

− − −   
   
   

 (A.20) 

where  

 ( )11 22 33 12 13 23
1

2
9

K c c c c c c = + + + + + 
 (A.21) 

 

References 

Achenbach, J. D. 1975. Wave propagation in elastic media. Elsevier, Amsterdam. 

Berryman, J. G. 1980. Long-wavelenght propagation in composite elastic media, I. spherical 

inclusions. J. acoust. Soc. Am. 21, 47-64 

Biot, M.A. 1956. Theory of propagation of elastic waves in a fluid saturated porous solid,      

I. Low-frequency range. J. acoust. Soc. Am. 28, 168-178. 

Bourbié, T. 1987. Acoustics of Porous Media. Editions Technip, Paris. 

Carcione, J. M., Ch. Morency, J. E. Santos 2010. Computational poroelasticity - A review. 

Geophysics 75, 229-243. 

Carcione, J. M. 1998. Viscoelastic effective rheologies for modelling wave propagation in 

porous media. Geophysical Prospecting 46, 249-270. 

Carcione, J. M. 2001. Wave fields in real media: Wave propagation in anisotropic, anelastic 

and porous media. Pergamon. 



 

49 

 

Cowin, C. S. 2013. Continuum Mechanics of Anisotropic Materials. Springer, New York. 

de la Cruz, V., T. J. Spanos 1985. Seismic wave propagation in a porous medium. Geophysics 

50, 1556-1565. 

de la Puente, J. 2008. Seismic wave propagation for complex rheologies: Discontinuous 

  Galerkin methods for the simulation of earthquakes. VDM Verlag Dr. Müller, 

Saarbrücken. 

de la Puente, J., M. Dumbser, M. Käser, H. Igel 2008. Discontinuous Galerkin methods for 

wave propagation in poroelastic media. Geophysics 73, T77-T97. 

Detournay, E., A.H.-D. Cheng 1993. Fundamentals of poroelasticity. Pergamon Press,       

113-171. 

Environment, 2003. Available at: 

 http://environment.uwe.ac.uk/geocal/SoilMech/stresses/drainage.htm 

Masson, Y. J., S. R. Pride 2007. Poroelastic finite difference modeling of seismic attenuation 

and dispersion due to mesoscopic-scale heterogeneity. J. Geophys. Res. 112, B03204. 

Moczo, P., J. Kristek, M. Gális 2014. The Finite-Difference Modelling of Earthquake 

Motions: Waves and Ruptures. Cambridge University Press. 

Morency, Ch., J. Tromp 2008. Spectral-element simulations of wave propagation in porous 

media. Geophys. J. Int. 175, 301-345 

O’Brien, G. S. 2010. 3D rotated and standard staggered finite-difference solutions to Biot’s 

poroelastic wave equations: Stability condition and dispersion analysis. Geophysics 75, 

T111-T119. 

Rice, J. R. 1998. Elasticity of Fluid-Infiltrated Porous Solids (Poroelasticity). Harvard 

University. 

Wang, H. F. 2000. Theory of Linear Poroelasticity with Applications to Geomechanics and 

Hydrogeology. Princeton University Press, Princeton, New Jersey. 

Zhu, X., G. A. McMechan 1991. Numerical simulation of seismic responses of poroelastic 

reservoirs using Biot theory. Geophysics 56, 328-339. 

 

 

  

 


