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Introduction

Solving nonlinear equation
f (x)=0

means to find such points that
f (x*)=0.

We call such point roots of function f (x).

In general, we do not know (because it is impossible) 
the explicit formula for roots of f (x).

Iterative methods:
we generate sequence of approximations

from one or several initial approximations (guess)
of root x*,

which converge to the root x*.
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Introduction

For some methods it is enough
to prescribe interval         ,

which contains the searched root,
other require

initial guess to be 
reasonably close to the true root.

Usually we start with robust
but reliable method

and then, 
when we are close enough to the root,

we switch to more sophisticated 
and faster convergent method.
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Introduction

For simplicity, we will consider only problem of finding
simple root x* of function f (x),
i.e. we suppose that .

We will also suppose that
function f (x) is continuous and

has so many continuous derivatives,
how many we need.

( )* 0f x¢ ¹
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Root separation and estimation of initial approximation

In order to find solutions of
f (x)=0

we have to estimate
the number of roots 

and
we have to determine intervals 

containing a unique root.

Theorem: If the function is continuous on interval and

then there is at least one root of  f (x)=0 on interval          .
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,a b

( ) ( ) 0,f a f b⋅ <



Root separation and estimation of initial approximation

x*



Root separation and estimation of initial approximation

We can find the initial approximation of roots of
f (x)=0

from graph of function f (x).
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Other possibility is to assemble the table of points for
some division

of chosen interval .



Root separation and estimation of initial approximation

Example: Obtain rough guess of roots of equation f (x)=0, where

( ) 34sin 1.f x x x= - -



Root separation and estimation of initial approximation

Example: Obtain a rough guess of roots of equation
2 3 0xe x+ - =

23xe x= -

Solution: Rearrange the equation as follows
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We will construct a sequence of intervals

containing the root.

Intervals are determined 

recursively as follows:

Bisection method

Let suppose that function values of f (a0) and f (b0) 
at endpoints of interval are of opposite signs,

i.e. .

( )0 0,a b
( ) ( )0 0 0f a f b⋅ <

It is based on the principle of sign changes.
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Bisection method

Find a midpoint of interval and designate it         .

If then and stop.

If then 

From construction of it follows that , 

so each interval contains a root. 
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After k steps the root is in interval with length

Bisection method

( ): ,k k kI a b=

( )1 1
0 02 .

2
kk k

k k k
b aI b a b a-- --

= - = = = -

Midpoint of interval             is an approximation of x* with an error

For obviously

1kx + ( ),k ka b
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Example: How many iterations by bisection method we have to perform
in order to refine the root by one decimal digit?



Bisection method

Bisection method converge slowly 
but the convergence is always guaranteed.

The rate of convergence (2) does not depend on function f (x), 
because we used only signs of function values.

If we efficiently use those values 
(and possibly also values of derivatives f‘(x) ),

we could achieve faster convergence.

Such “refined” methods usually converge
only if we starts from good initial approximation.

Most often such initial guess is obtained by bisection method.
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Rate of convergence

then      is called the order of convergence and
is error constant.

We say that
linear,

convergence is superlinear,    if
quadratic,

Let is a sequence which converges to and

. If there exists number and constant such that
0 1 2, , ,x x x  *x
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Rate of convergence

then      is called the order of convergence and
is error constant.

We say that
linear,

convergence is superlinear,    if
quadratic,

We say that the method converges with order , 
if all convergent sequences obtained by this method
have the order of convergence greater or equal to     and
at least one of them has order of convergence exactly equal to  .

Let is a sequence which converges to and

. If there exists number and constant such that
0 1 2, , ,x x x  *x

*k ke x x= - p 0C ¹
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Rate of convergence

Example: What is the order of convergence of bisection method?  
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Rate of convergence

Example: What is the order of convergence of bisection method?  

( ) ( )11
1 0 02* 2 .k

k k kx x b a b a- -
+ - £ - = -

Midpoint of interval is an approximation of x* with error1kx + ( ),k ka b
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Regula falsi (false position) method

It is very similar to bisection method. 
However, the next iteration point is not midpoint of interval

but intersection of axis x with secant through  and .( ),k ka f aé ù
ë û ( ),k kb f bé ù

ë û



Regula falsi (false position) method

The root of secant we estimate by

( ) ( )
( )1

k k
k k k
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b ax b f b
f b f a+

-
= -
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If then and stop.

If then

From construction of it follows that , 

so each interval contains a root. 
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After k steps the root is in interval .

Unlike the bisection method the length of interval in some

cases fail to converge to a zero limit.

Regula falsi (false position) method

Regula falsi method always converges.

The rate of convergence is
(similarly as bisection method)

linear.

( ): ,k k kI a b=

kI
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Secant method

It is similar to regula falsi method.

We start from interval containing the root.

Denote              and .

Let secant goes through points      and and

its intersect with axis  x
we denote .

Unlike the regula falsi method
we will not select an interval containing the root but

we construct secant through points ,
and its root we denote .

,a b
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( )0 0,x f xé ù
ë û ( )1 1,x f xé ùë û

2x

( ) ( )1 1 2 2, , ,x f x x f xé ù é ùë û ë û
3x



Secant method

It is similar to regula falsi method.

We start from interval containing the root.

Denote              and .

Let secant goes through points      and and

its intersect with axis  x
we denote .

Unlike the regula falsi method
we will not select an interval containing the root but

we construct secant through points ,
and its root we denote .

Then we construct secant through and and so on.

,a b

0x a= 1x b=

( )0 0,x f xé ù
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Secant method



Secant method

The k-th approximation of root is obtained by

( ) ( )
( )1

1
1

,k k
k k k

k k

x xx x f x
f x f x

-
+

-

-
= -

-
where

The computation is finished if stop criterion is hold.

or

or

or if we find the root.

Caution! The condition does not guarantee that 

Example: How we can check the condition                       ?

0 1, .x a x b= =

1 ,k kx x + - £

1 * .kx x + - £

1 ,k k kx x x+ - £

( )1 ,kf x + £

1 * .kx x + - £



Secant method

Secant method could be divergent !



Secant method

Secant method converge faster than regula falsi,
but could also diverge.

It converge
if initial points and are close enough to root .

Is it possible to show, that convergence rate is

i.e. the secant method is superlinear.

1x 2x *x

( )1 1 5 1.618 ,
2

p = + 
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Newton’s (Newton-Raphson) method

We will work with tangent 
of the graph of function f.

Therefore we suppose that f is differentiable.

We chose the initial approximation of the root .
We route a tangent line 

to the graph of function f through point .

The intersect with axis x will be .

Then we route a tangent line through ,

The intersect with axis x will be ,

and so on.

0x
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Newton’s (Newton-Raphson) method



Newton’s (Newton-Raphson) method

Suppose that we know
and we want to find better approximation .

We construct the tangent line to the curve                 through .

Using equation for the tangent line

with we obtain an intersect with the axis :

( ),k kx f xé ù
ë û

kx
1kx +

( )y f x=

( ) ( )( )k k ky f x f x x x¢= + -
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Newton’s (Newton-Raphson) method - convergence

Let be an error in the k-th step.

Lets construct the Taylor expansion of at

where is some point of interval with endpoints and .

After some algebra we obtain

*k ke x x= -

( )*f x kx
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k
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Newton’s (Newton-Raphson) method - convergence

Let be an error in the k-th step.

Lets construct the Taylor expansion of at

where is some point of interval with endpoints and .

After some algebra we obtain
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Newton’s (Newton-Raphson) method - convergence

Let be an error in the k-th step.

Lets construct the Taylor expansion of at

where is some point of interval with endpoints and .
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Newton’s (Newton-Raphson) method - convergence

Let be an error in the k-th step.

Lets construct the Taylor expansion of at

where is some point of interval with endpoints and .
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Newton’s (Newton-Raphson) method - convergence

( )
( )

2
1

1
2 k k

k

f
e e

f x


+

¢¢
=

¢

( )
( )

1
2lim 2 .k

k kk

fe
f xe

+

¥

¢¢
=

¢

After applying a limit

Newton’s method converges quadratically.

(4)

then      is called the order of convergence and
is error constant.

p
C

Recall the definition of the rate of convergence:
Let is a sequence which converges to and

. If there exists number and constant such that
0 1 2, , ,x x x  *x

*k ke x x= - p 0C ¹
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e
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+
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Newton’s (Newton-Raphson) method - convergence

Newton’s method can also diverge



Newton’s (Newton-Raphson) method - convergence

Question: After which condition the is the Newton’s method convergent?

Suppose that in some vicinity I of the root it holds

for all

If , then from (4) follows

or

Repeating this idea we get

If , then for sure and therefore .

Newton’s method is always convergent 
if the initial approximation is sufficiently close to the root.

( )
( )

1
2

f y
m

f x
¢¢

£
¢

, .x I y IÎ Î

kx IÎ
2

1k ke m e+ £ 2
1 .k kme me+ £

2 4 8 2 1
1 1 2 0

k
k k k kme me me me me +
+ - -£ £ £ £ £

0 1me < 1 0ke +  1 *kx x+ 



Combined method

Good initial approximation      can be obtained by bisection method.

Combination of bisection and Newton’s method leads to
a combined method,

which is always convergent.

e.g. procedure rtsafe from Numerical Recipes;
Newton’s method is applied only in the vicinity of the root,

otherwise the bisection method is used.
This assures the fast convergence.

0x
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Steffensen’s method

Steffensen’s method is modified Newton’s method

where the derivative       is approximated by

and is number, which tends to zero for greater     .

We chose .

Unlike the secant method we have one more function evaluation.
However, is it possible to show that
the rate of convergence is the same 

as in Newton’s method, i.e., quadratic.

( )
( )1 ,k

k k
k

f x
x x
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Functional analysis

Metric space

A metric space is an ordered pair where is a set and

is a metric on    , such that for any , the following

holds:

1.                 

2.                             

3.                        

4. 

( , )X d X
d X , ,x y z XÎ

( , ) 0d x y ³
( , ) 0d x y x y=  =
( , ) ( , )d x y d y x=
( , ) ( , ) ( , )d x z d x y d y z£ +

Convergence: If there is some distance such that 
no matter how far you go out in the sequence, 

you can find all subsequent elements which are closer to
the limit than 



Functional analysis

Cauchy sequence <- term in functional analysis

Definition: Metric space is complete if
each Cauchy sequence has limit in the space

Definition: The element is called fixed point
of mapping , 

if
:F X X

x XÎ

( ) .F x x=



Functional analysis



Functional analysis

Contraction mapping: images of two elements are closer then originals

( ) ( )( ) ( ) ), , , ; 0,1x y M d F x F y d x y " Î £ Î



Functional analysis

Banach fixed-point theorem: 

Let (X, d) be a non-empty complete metric space with a contraction

mapping                 . Then     admits a unique fixed-point       in    . 
Furthermore,      can be found as follows:

start with an arbitrary element      in     and define
a sequence         by                    , then                .

:g X X

1( )n ng x x- =

g *x X
*x

0x X
{ }nx *nx x



Fixed-point iteration

What it is good for? Suppose we want to solve              .

Let‘s rewrite the                as                      , assuming                  .

We‘ll get fixed-point problem for         .

while the solution of                    .

is root of                 . 

Function g is called the iterative function.

We will chose the initial approximation and
next iterations will be                      . 

( ) 0f x =

( )

( )
( )

g x

f x x x
h x

+ =


( )g x

( ) 0pf x =
( )p pg x x=

( ) 0h x ¹( ) 0f x =

0x
( )1 .k kx g x+ =



Fixed-point iteration



Fixed-point iteration

This way not always leads to the fixed point of g.



Fixed-point iteration

We said that
fixed-point iteration method converges

if the iterative function is
contraction mapping.

In case of function of one variable,
contraction closely relates to

the rate of increase of function.



Fixed-point iteration

Theorem:
Let function g maps an interval to itself

and g is derivative on this interval.
If there exists number so that

then there exists fixed point       of function g in interval          and
sequence of iterations

converges to the fixed point for any initial approximation .
Next it holds

Then is it possible to show, that convergence is linear.

( )1k kx g x+ =

,a b

)0,1 Î

( ) , ,g x x a b¢ £ " Î

,a b*x

0 ,x a bÎ

1* .
1k k kx x x x

 -- £ -
-



Fixed-point iteration

The are many ways how to express from the               .

One possibility is to divide the equation by its derivative f’,
then multiply the equation by -1

and after all we add to both sides of equation .
We get

( ) 0f x =x

( ) 0f x =

x

( )
( )

.
f x

x x
f x

= -
¢

Newton’s method is a special case
of fixed-point iteration method.
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Aitken Extrapolation

Suppose the linear convergence of an iterative method

i.e. it holds

1

*
lim .

*
k

k k

x x
C

x x¥ -

-
£

-

( )1 ,k kx g x+ =

then      is called the order of convergence and
is error constant.

p
C

Recall the definition of the rate of convergence:
Let is a sequence which converges to and

. If there exists number and constant such that
0 1 2, , ,x x x  *x

*k ke x x= - p 0C ¹

1lim ,k
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k

e
C

e
+

¥
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Aitken Extrapolation

from which we could express the fixed point x*

( )1* * ,k kx x C x x-- » -

( )1 * * ,k kx x C x x+ - » -

( ) ( )( )

( )
( )

1

1
2

1 1

2 2 2
1 1 1 1

2
1 1 1 1

2
1 1

1 1

* *
* *

* * *

2 * * * *

* 2

*
2

k k

k k

k k k

k k k k k k

k k k k k k

k k k

k k k

x x x x
x x x x

x x x x x x

x x x x x x x x x x

x x x x x x x

x x x
x

x x x

-

+

+ -

+ - + -

+ - + -

+ -

+ -

- -
»

- -

- » - -

- + » - + +

- »- + +

-
»

+ +

We can speed-up the convergence of fixed-point iteration as follows:
Suppose that . Then it approximately holds1k 



Aitken Extrapolation

from which we could express the fixed point x*

where                                                                     .

This way we can define the new iterative formula
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We obtained the Aitken-Steffensen iterative method
for finding the fixed point      of function .*x ( )g x

( )1* * ,k kx x C x x-- » -

( )1 * * ,k kx x C x x+ - » -

We can speed-up the convergence of fixed-point iteration as follows:
Suppose that . Then it approximately holds1k 
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If the initial approximation x0
is close enough to fixed point x* and

if ,
then Aitken-Steffensen method converges quadratically.

If , The convergence of this method is slow.

( )* 1g x¢ ¹

( )* 1g x¢ =
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A few notes

Note (About the multiplicity of roots)

We say that the root of equation has multiplicity q, 

if function is defined in point      .

and there is a root of          in that point, i.e. if

If function has a continuous derivatives up to order      .

in the vicinity of the root      then

*x ( ) 0f x =
( ) ( ) ( )/ * qg x f x x x= - *x

( )0 * .g x< <¥

( )f x q

( ) ( )* 0, 0,1, , 1.jf x j q= = -

*x

Some of before mentioned methods could be applied 
for finding the multiple roots but the convergence is slower.

If we expect the multiple roots,
it is advisable to use the fact that

function has simple root.( ) ( ) ( )/u x f x f x¢=

( )f x



A few notes

Note (On achievable accuracy)

Let is an approximation of simple root of equation .
Using the mean value theorem we get

where is some point between and . 
Suppose that we work with approximate values

, 

where .
Then the best results we can achieve is .

In that case , so

while is nearly constant in the vicinity of root.

It is impossible to compute with error less than .

( ) 0f x =

( ) ( ) ( ) ( )( )* * ,k k kf x f x f x f x x¢= - = -

kx

*x kx

( ) ( )k k kf x f x = +

k £
( ) 0kf x =

( )kf x £
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( ) ( ) ( )

** : ,
*

k
k x

k

f x
x x

f f xf x
  


- = £ » =
¢ ¢¢

f ¢
*x *

x

achievable accuracy of the root x*



A few notes

Note (On achievable accuracy)

If the slope in the root is small,
then the achievable accuracy is large –

- ill-conditioned problem

( )*f x¢ *x



A few notes

Note (On achievable accuracy)

Similar consideration for the root of multiplicity q
imply the achievable accuracy

( ) ( )

1

* ! .
*

q

x q
q

f x


æ ö÷⋅ç ÷ç= ÷ç ÷ç ÷çè ø

The exponent causes that
the computation of multiple root
is in general ill-conditioned task. 

1/ q
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