Lecture 5

Numerical methods

Approximation of functions
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Approximation and interpolation

To approximate function f(x) means

to substitute it by a function ¢(x),

which is in some sense close to function f(x).

We will deal with two basic types of approximation:
Interpolation and least-square method

Definition: Interpolation is such approximation,

in which the function @(x) goes exactly through given

points [x,);], where y.=f(x;) .

Sometimes we also require that

functions f and @ have the same derivatives

in points X, .




Approximation and interpolation

To approximate function f(Xx) means

to substitute it by a function ¢(x),

which is in some sense close to function f(x).

We will deal with two basic types of approximation:
Interpolation and least-square method

Definition: Least-square method is such approximation,
in which ¢(x) is ,interlaced*
between given points [x,);] in such a way,

that the ,distance* between functions f and ¢ is

in some sense minimal.

Usually the function @(x) does not go through

points [x,);].




Approximation and interpolation

For example, we use approximation @(X)

to approximate calculation of values of function f(x)

during the plotting of graph ¢(x) = f (x).

In general, @(x) is used to solve problems,
In which it is practical and sometimes inevitable

to substitute function f

by its approximation @.

Such an example is computation
of derivative or definite integral.

It is desirable that calculation of @(x) is “simple”.

Therefore @(x) is often seek in the polynomial form.



Interpolation

We chose interpolation function @(x)

from a suitable class of functions.
We restrict ourselves to two
the most common cases:

1. @(x) is a polynomial function;

2. @(x) is a piece-wise polynomial,
I.e. in general different on each subinterval
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Polynomial interpolation

Let suppose there are n+1 given points

X0s XpseeesXpys X Z X for =],

which we call interpolation nodes,
and in each node there Is given value Y.

We are looking for interpolation polynomial P, (x)

of degree of most 7,
which satisfies interpolation conditions

P (xl.> =y, 1=0,1,...,n




Polynomial interpolation




Polynomial interpolation

Unisolvence theorem

Lets there is given a set of points [ x,, ;] ,1=0, ... n,
where no two X; are the same.

Then there exists a unique polynomial Pn degree at most 7 such,

that P (x,)=y, i=0, ... n.

We prove the existence of interpolation polynomial
In such a way,
that we show its construction
for any mutually different nodal points.



Polynomial interpolation

The unigueness of interpolation polynomial
can be proofed by contradiction.

Suppose that there are two at-most 7 degree polynomials
P (x) and R (x) such that
P(x)=y,i=0,...n andalso R(x,)=y, i=0,...n.

We will show, that the two polynomials are equal.

Denote QO (x) =P (x) - R (x).
We see, that Q,(x) is also at-most n degree polynomial
and moreover Q (x;) =0, i=0, ... ,n.
We have at-most 7 degree polynomial, which has n+1 roots.
But this is possible only if O, (x) is identically equal to zero, O, (x) =10
and tehrefore P (x) =R (x) VxeR
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Lagrange polynomial

Interpolation polynomial in Lagrange form is
P, (x)= yolo (x)+yily (%) 44,0, (x Zy,l ,
where /(x) are Lagrange basis polynomlals deflned as

] (x): (x—x())(x—xl)...(x—xi_1)<x—xl-H)...(x—xn)

(0, —x0) (>, —x7)-. (xl-—xi_l)(xi—xi+1)...(xi—xn) |

It Is easy to see that
1 for k=i, ‘
[ (xk) — . i,k=0.,1,..n
0 for k=i,

therefore interpolating conditions

— Zyili <xk> =Y., k=0,1,....n
i=0

are satisfied.



Lagrange polynomial

Example: Find the interpolation polynomial for data given in table

xi | —1 1 2 3

yi| -6 —2 -3 2

At first we obtain Lagrange basis polynomials

(x —1)(x — 2)(x — 3) B
fo(x) = (—1-1)(—1-2)(—1-3)

1
2—4(x3—6x2+11x—6),

(x+1)(x—2)(x—3) 1,6 4 5
l1(x) = AT 1)1 -2)1-3) Z(X — 4x“ + x + 6)
)= CFDO=DX=38) 1 s g0 gy

C (x+1)(x—=1)(x—-2)
= ErnGEo1G-2)

—(x —2x? — x +2)

(

(
(2+1)(2—-1)(2-3) 3
(

(



Lagrange polynomial

xi | —1 1 2 3

yi| 6 —2 -3 2

(x —1)(x —2)(x — 3)
lo(x) = I D113
(x+ (x—2)(x—3) _1
l1(x) = AT D213 = 2 (x
(x+1)x—1)x—3) 1,, .,
(2+1)(2-1)(2-3) —§(X — 3x“—x+3),

(x+1)(x-1)(x-2) 1
3+1)(3-1)(3-2) _§(X3_2X2—x+2)

1
=~z (¢ —6x* +11x — 6),

=l

la(x) =

€3(X) —

Then we construct the interpolation polynomial

P3(x) = —6-lo(x) —2-l1(x) —3-Lo(x) +2-3(x) = x> —3x* + x — 1.



Lagrange polynomial

xi | —1 1 2 3

vi| -6 -2 -3 2

P3(x) = —6-lo(x) — 2 - l1(x) —3-lp(x) +2-l3(x) = x> —3x* +x — 1.




Lagrange polynomial

The main advantage of Lagrange polynomial is
its elegant form.
Therefore it is mainly used in theoretical considerations.

It is not ideal for practical use
because it has two main drawbacks

e If we add another node x, .,
we have to recalculate all Lagrange basis polynomials

The number of operations needed to calculate values P, (x*)
Is relatively high,

it requires 2n2+2n operations of multiplication and

2n*+3n operations of addition
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Newton polynomial

Drawbacks of Lagrange polynomial are eliminated by
Newton polynomial, which has a form

Pn(x) = ap+a1(x—xo)+az2(x —xo)(x —x1)+- - -+ an(x—x0)(x —x1) - - - (X —Xp_1) .

Addition of another node X, is easy,
it is enough to add next term to the P,(X) because

Pni1(x) = Pna(x) + ans1(x — x0)(x — x1) - - (x — xpn) .



Newton polynomial

The value z=P_(x*) can be estimated using Horner scheme:

Z:=a,
and then fori = n-1, n-2, ... , O we calculate
z:=z (X*-X;)) + &

This significantly reduces the number of operations.

The coefficients a; could be computed directly from interpolation conditions

Pn(xl):y" I‘:O’].._....,n.

There is, however, better way called
Divided-Difference method.



Newton polynomial

At first define divided differences:

Plxi] :==yi,
i, Xit1] == (P[xiv1] — P[xi])/(Xit1 — xi) ,

Plxi, Xi+1, Xi+2] := (P[xi+1, Xi+2] — Plxi, xi+1])/(Xi+2 — xi),

O

and for 3< k < n:

P[Xiaxf—l—la R )Xf—}—k—laxf-}-k] = (P[Xf—}—la JL A )Xf—{—k] — P[Xfa LA 3Xf+k—1])/(xf+k — Xf) .

It is possible to show that

aj = P[XODXla"'axf]a



Newton polynomial

So the Newton polynomial is

P.(x) = P[xo] + P[x0,x1](x — x0) + P[x0, x1,x2](x — x0)(x — x1) + ...

+ Plxo,x1,- -, Xn](x —x0)(x — x1) ... (X — Xp—1) -

If we denote Py = P[xi_k,...,x], then a=P; and
the algorithms of divided-difference method will be

For i=0,1,...,n do Pyy:=Yy;.
For k=1,2,...,n do:
for 1=k, k+1, ..., n do:
Pi := (Pik—1 — Pi—1k—1)/(xi — Xi—k)
end of cycle i1,

end of cycle k .



Newton polynomial

The calculation could be written in table,
which is filled-in by columns.

xo | Poo




Newton polynomial

Computation of coefficients a, = P;;
and
the follow-up computation of z=P_ (x*) by Horner scheme

requires
%nz + %n operations of multiplication and
n*> + 3n operations of addition.

It is much less than using Lagrange polynomial P,(x*)
( 2n?+2n operations of multiplication and
2n2+3n operations of addition)



Newton polynomial

Example: Construct Newton polynomial for the same data
as in previous example

x; | —1 1 2 3

yi| -6 -2 -3 2

Progress of computation is stored in table:

Xi | Pio Pin P2 Ps

—1 | —6 — a9 = —6
1| =2 2 — a1 = 2
2 -3 -1 -1 == ép 9= =l
3 2 5 3 1 — az = 1,




Newton polynomial

x| -1 1 2 3 o = -6
a1 = 2
yi| -6 —2 -3 2 2, = -1
a3 = 1

P3(x)=-6+2-(x+1)+(-1)- (x+1)(x—1)4+1-(x+1)(x—1)(x—2).

We calculate the value of polynomial at point x* = 0,5
using Horner scheme:
Zz:=a,
and then for i = n-1, n-2, ... , O we calculate
z:= z (X*-x;,) + a;, etc.

P3(0,5) = ((1- (0,5 —2) —1)- (05— 1) +2)- (0,5 +1) — 6 = —1,125.



Newton polynomial

If we add another node x, = O with prescribed value y, = 2,
then it is enough to add one more line to the table

Xi | Pio Pan P2 Pi

—1| -6

Xao | Poo Pa1 Pax Paz  Pa

0| 2 0 25 05 -05 — a2, = -05

and then Py(x) = P3(x) + (—0,5) - (x + 1)(x — 1)(x — 2)(x — 3)
where

P3(x)=—-6+2-(x+1)+(-1)- (x+1)(x—1)+1-(x+1)(x—-1)(x—2).
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The error of approximation for interpolating polynomial

Notation
Symbol C (a,b) denotes a set of all continuous functions

on interval (a,b).

Symbol C*(a,b) denotes a set of all functions,
which are continuous together with
its derivatives up to the order k
on interval (a,b).

For k = 0 obviously C°(a,b)=C(a,b)




The error of approximation for interpolating polynomial

Let suppose that y; are not arbitrary,

but they are values of function f in the nodes, y;,= f (X;).

Then we want to evaluate the error
E,(x*):=f(x*)—P,(x*)
at chosen point x*.

For x* =x;, iIs E,(X) =0.

What is the error out of nhodes?



The error of approximation for interpolating polynomial

Theorem: Let x* is and arbitrary point,

(a,b) is any interval which contains all interpolation nodes x; and
also the examined point x* and
let fcC" <a,b> .

Then for the error E (xX*) holds

f(n+1) (§>
(n+1)!

E,(x*)=f(x*)—P,(x*) = (X* =X ) (X *=Xq)...(x *=X,) ,

where &= £(x*) is some point from the interval (a,b).

By &=¢&(x*) we want to stress that,
the position of point £ depends not only on function f and interpolation P,
but also on the chosen point x*.



The error of approximation for interpolating polynomial

Notes: (For the simplicity we will consider that
X< X1 <+ < Xp. )

1. If M,,, is such a constant that |f("1)(x)| < M,1 for each x € (a, b),

then .
#\| < n+1
E,(x*) < i wnt1(x)]

where wpi1(x) = (x —x0)(x — x1) ... (X — xn).
This estimation is often pessimistic.

2. If function f(x) has derivatives of all orders bounded
by the same constant,
then for large enough n is the error arbitrary small.



The error of approximation for interpolating polynomial

Example: For f (x) = sin x we can take M,,, = 1, therefore

(b _ a)n—l—l

EC <y

It is possible to show that for n — oc,
(b - 3)”+1

(n+1)!
so P,(x) — f(x) for each x from any interval (a,b) .

> 0



The error of approximation for interpolating polynomial

3. If interpolation polynomial is used for calculation of values
of interpolated function outside interval (X0, Xn),
we say that we do extrapolation.
In such a case the error could be large,

because the value |wp11(x)| quickly grows,
when X retreats form X, to the left or from X, to the right.

4. wpyi1(x) can achieve large values also inside the interval (Xo,Xn),

mainly if nodes x; are deployed equidistantly,
i.e. if x; = xo + th where h is fixed step.



The error of approximation for interpolating polynomial

| | ! ! |

IR : || — =18 5 5 s M
0.6 |----‘-‘ ----------------------------------------------------------------------- f!”b
71 [ )

1 ! !
0.2 L “ ,';.'-.'.'\"' ‘ ’.-'g'\ ,"" !
0 '-"'s\i S S e TN ’ e -.,'
I | | I I

-1.5 -1 -0.5 0 0.5 1 1.5

Graph of function |wp41(x)|



The error of approximation for interpolating polynomial

Example: Construct the interpolation polynomial for function
1

f(x) = 15 25,2 using equidistantly positioned nodes on (—1,1).

2 : , S
"‘ [ = = =P, ; I o
- : 2\ | 1, This is so called
151 B | Runge’s phenomenon
1 0
g 1|
|

" : and Runge function,

I which demonstrates that

! the larger number of nodes,
the larger interpolation error.

Therefore
It is advisable
not to use
high degree
Interpolation polynomials
: : : with equidistant nodes.
-0.5 1 i ;
1 -0.5 0 0.5 1
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Optimal distribution of interpolation nodes

The Runge’s phenomenon can be mitigated
by appropriate distribution of nodes.

Definition: Normalized polynomial of degree n has form

P,(x)=x"+ax" "+ +a,

Theorem: Among all normalized polynomial of the degree n
just polynomial

T, (2)= %cos(n arccos z)

on the interval <—1,’I>
IS less deviated from zero.

~

Polynomials T, (z) are called Chebyshev polynomials of the first kind.

n




Optimal distribution of interpolation nodes

Chebyshev polynomials could seem to be a trigonometric,
but due to trigonometric identities it is possible to write also this form

0

0(2)=1
T,(z)=2
[, (2) = 22% —1
5 (2)=42° -3z
4 (z)=8z" —8z2° +1

~

Ton(2)=22T,(2)-T,4(z) n21.

Optimal interpolation nodes are Chebyshev nodes,
I.e. the roots of Chebyshev polynomials of the first kind.



Optimal distribution of interpolation nodes

Let suppose that we are looking for optimal distribution
of nodes on interval (a, b).

We transform the interval <—1,1> into interval (a, b)

b—a b-+a
= —|——|—

X Z
2 2

Roots of Chebyshev polynomial of degree n+1

cos|(n+1)arccos z|=0 = (n-+1)arccosz = A+
21 +1 21 +1
Z. = COS 7| <« arccosz = s
2n + 2 2(n+1)

then optimal distribution of interpolation nodes is

21 +1
2n + 2

b+a
2

xf:b;a i =0,1,..,n.

COS T+
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Hermite interpolation

Up till now we deal with interpolation,
In which the interpolating polynomial was given by prescribed values
P.(X)) = Vy; In nodes X;.

If we prescribe also derivatives if interpolated function,
we say about Hermite interpolation.

Let suppose that

in each node x;, we have «a; +1 numbers yi<0)

,yi(1),...,yi(0fi>

Denote
n
a=n-+ Zai
i=0

Then Hermite interpolation polynomial P,(x) is
polynomial at most of degree «, which holds interpolation conditions

jzojlf"'gafj i:O,].’-.-’n.

It Is possible to proof that there is unique such polynomial.



Hermite interpolation

If

y . .
y‘U)ZEJ-f(X,). J=0,1,...,a;, l=0,1,...,n,

we say that P,(x) is Hermite interpolation polynomial of function f (x).

Let (a, b) is interval containing all nodes.
If f € C**1(a, b), then
for the error of Hermite interpolation in point X € (a, b) holds

Flati(e)
(o +1)!

where & = £(Xx) is some point from interval (a, b) .

f(X) = Pa(X) =

(X — x0)® (X — x) ™. (R — x,) >,




Hermite interpolation

It Is not advisable to use the Hermite polynomial of higher degree,
because the error between nodes could be significant.

The formula for calculation of coefficients of Hermite polynomial
IS complicated,

we show the calculation on example.



Hermite interpolation

Example Construct Hermite polynomial for data from table

xi | yi yi oyl

-1 2 -4 12

1| 2 4

So we have xg = —]_, Qg = 2, yéo) — 2, yc()l) = _4’ yé2) — ]_2lr

x1= 1, a1=1, yl(o) = 2, yl(l) = 4.

Because we have prescribed 5 conditions,
we will seek for Hermite polynomial of degree a = 4.

We will write it in the form of power series around that point,
in which there is the most prescribed conditions,
In our case around the point xp = —1 .

Pi(x)=a+b(x+ 1)+ c(x+ 1)+ d(x+ 1) + e(x + 1)*.



Hermite interpolation

/

xi | yi yi oy

-1 2 —4 12

1| 2 4

Pi(x)=a+b(x+1)+c(x+1)°+d(x+1)>+e(x+1)*.

Coefficients a, b, ¢ could be easily obtained.
From the condition Ps(—1) =2 we get a=2.

Similarly from P;(—1) = —4 we get b= 4 and because
P;(—1) = 2¢, from condition P)/(—1) = 12 we getc = 6.

Next
Ps(1)=2—-4-246-2°+d-22+¢e.2Y=2 — 8d + 16e = —16,
Pi(1)=—4+2-6.-243.d-2°+4.¢-2°=4 — 12d + 32e = —16.

Solving the system we get d = —4, e = 1. Therefore

Pa(x) =2 —4(x+1)+6(x+1)? —4(x+1P> +(x+1) =x*—1.



Lecture 5

OUTLINE

1. Approximation and interpolation
2. Polynomial interpolation

a. Lagrange polynomial

b. Newton polynomial

c. The error of approximation for interpolating
polynomial

d. Optimal distribution of interpolation nodes
e. Hermite interpolation
3. Spline interpolation
a. Linear spline interpolation
b. Hermite cubic spline
c. Cubic spline
d. Cubic natural spline



Interpolation

We chose interpolation function @(x)

from a suitable class of functions.
We restrict ourselves to two
the most common cases:

1. @(x) is a polynomial function;

2. ¢(x) is a piecewise polynomial,
I.e. in general different on each subinterval



Spline interpolation

If we want to interpolate function f (x)
on the relatively long interval (a,b) ,
we have to request fulfilment of interpolation conditions
In a very large number of nodes.

If we use interpolation polynomials then
It has to be high degree
and this, as we already know,
usually leads to large errors between nodes.

This is therefore not right way to do.

The better way is to divide the interval (a,b) into
many small subintervals
an on each subinterval

construct an interpolation polynomial of low degree.



Spline interpolation

Suppose that

Aa=Xo < X1 << Xj—1 < Xj < Xj41 < - < Xp—-1 <Xn=b
is division of interval <a,b> :

In each node X; there is prescribed value y; of interpolant.

Denote the length of i-th interval <xi_1,xi> as h;
and the length of the longest interval as h, i.e.

h,:ZX,'—X,'_l, i:1,2,...,n,

h = max h;.
1<i<n



Spline interpolation

We will denote searched piecewise interpolating polynomial
as S(x)
and we will call it interpolating spline.

The S(X) is polynomial on each interval <Xi_1,xi> and
reference to the i-th interval is denoted by subscript i, i.e.

S(X) is polynomial S;(x) on interval <xi_1,xi >

For the expression of polynomial S;(x)
IS good to use local variable

S=X—Xj—-1.

We will also use the first divided difference

oo Yi—Yi—1  Yi—VYi-1
i — — .

Xi — Xi—1 h;
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Linear spline interpolation

Linear spline is the easiest spline:
we connect each two neighboring points [X;_4,Y; 4] and |x;,y;| by
a line segment.

Then
Si(x) = yi—1+ : ! (x — xi—1) = Yi—1 + S9;
Xi — Xi—1

IS linear interpolating polynomial passing through points
Xi_4,Yi 4] and [x,y;].

Linear spline S(X) is continuous function,
the derivative S (x) is however
In general discontinuous at interior nodes.



Linear spline interpolation




Linear spline interpolation

If yi="f(x;),i=0,1,..., n, and f € C?(a,b), then

F Iy

for the error of approximation it holds
£(x) — S(x)| < Ch?,

where x € (a,b) is arbitrary and C is constant independent on h.

For a sufficiently large number of nodes it is possible
to make the error arbitrary small.

Example: Drawing a graph on screen
with resolution 1024 x 768 points.



Linear spline interpolation

More accurate interpolant could be constructed in such a way,
that we approximate function f(x)
on intervals (X0, Xk), (Xk,X2k), ...
using interpolating polynomials of degree
at most k, where k >1.

The error of interpolation would be proportional to hk+1,
but derivatives in nodes Xi, X2k, ... would remain discontinuous.

The large k has no sense, because,
we would have large errors
between nodes and
we would have the same problem
as in the beginning.
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Hermite cubic spline

Hermite cubic spline
IS a function S(x), which

1. it is continuous on interval (a, b) together
with its first derivative, i.e. S € C(a,b),

2. It holds interpolating conditions
S(x;) =y, S'(x;) = d;, i=0,1,...,n,

where y;, d; are given functional values
and derivatives, respectively,

3. it is polynomial at most third degree
on each interval (x;_1,X;), i = 1,2,...,n.



Hermite cubic spline

Si(X) is therefore cubic Hermite polynomial
uniquely defined by conditions

Sf(xf—l) = Yi—1, 5,-’(Xf—1) =di_1,
Sf(xi) = Yi, S;(Xf) =d;.

It is easy to find, that the conditions are fulfilled for
36,' — 2d,:_1 — d,' 4 53 d;'_l — 225; + di .
hi h:

S,'(X) = Yi—-1+ Sd,:_l -+ 52

Function S(x) is continuous together with its first derivative,
the second derivative is in general discontinuous.



Hermite cubic spline

If y;=f(x), di=f"(x),i=0,1,..., n, and f € C%a,b),

then for the error of interpolation it holds
1f(x) — S(x)| < Ch*,

where x € (a, b) is arbitrary and C is constant independent on h.

If the derivatives d, are not provided,
we have to calculate them using
appropriate additional conditions.



Hermite cubic spline

Shape preserving Hermite cubic spline
IS one possibility.

The derivatives d, are chosen in such a way
that S(x) will have the same convexity as linear spline
passing through points [X;,V;].

In detail, if L(X) is linear spline then we require:

1. if L(X) has a local extrema at interior node,
then the S(x) has also local extrema;

2. If L(X) iIs monotonous between two neighboring nodes,
then also S(x) is same way monotonous.



Hermite cubic spline

One of good implementation
could be find in MATLAB as function pchip.

The calculation of tangents d, is made as follows:

1. Interior nodes

If tangents O, and 0,,, have opposite signs,

or if some of them equals to zero, i.e. if
0jdiz1 <0, we set di =0.

Otherwise we estimate d, as generalized

harmonic average of tangents 0, and 0,,, as
w1 + Wo Wy Wo

5

= +
d,' O; (S,:_|_1 '
where w; = h; + 2h,:.|.1 , Wo = 2h; + h,:+1 .



Hermite cubic spline

One of good implementation
could be find in MATLAB as function pchip.

The calculation of tangents d, is made as follows:

2. Endpoints x, and X,,.

The easiest way is to set up d, = 0,, d, = 0,.

There Is better approximation in the pchip algorithm
based on quadratic interpolation

(see https://www.mathworks.com/moler/interp.pdf )
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Cubic spline

In the cubic spline we can determine
the tangents d; at interior nodes in such a way,
that we require S(x) to have continuous also
the second derivative

S'(x;) = S” (x), i=1,2....,n—1.
i i+1

If we differentiate

30; —2d;_1 — d| di_1— 20+ d;
Sf(X) = yi_1+sdi_1 + F = hf' - - g¥ = - 72 s :
we get

- (6h,‘ — 125)5,‘ -+ (65 = 4h,’)d,'_1 -+ (65 = 2h,’)d,'

5;!()() h2



Cubic spline

- (6h, = 125)5; + (65 = 4h,’)d,'_1 + (65 = 2h,‘)d,'
— h? -

5i'(x)

For x = x; we have s = h,, so

—66; 4+ 2d;_; + 4d;

S5i (xi) = h-

For x = x,_; we have s = 0 and

65; — 4d,'_1 — 2d,
h; '

If we advance the subscript i by 1 in the last formula we get

S/ (xi-1) =

60;11 — 4d; — 2di+1

5!{—!}-1()(»") — hr’—i—l



Cubic spline

Inserting into equation

Sy =San(x); i=1,2,...,n—1.
we get
hf-{—ldi—l + 2(h,‘+1 + h;)d; + h;d;+1 — 3(h;+15; + h;5;+1), | = 1, 2, ..,n—1.

If we have the boundary conditions like
S'(a) =d,, S'(b)=dp,
then we insert into the first equation dp := d, and
term hod; will go to the right-hand side

and into the last equation we insert d, := dp and
term h,_1dp, will go to the right-hand side.

Solving the system we obtain the rest tangents
d,i=1,2,...,n— 1.



Cubic spline

The coefficient matrix is tridiagonal, diagonally dominant,
so we can solve it by modified GEM
for tridiagonal matrices.

If
Vi = f(X,'), = 0, ]., S aoe g do — f’(Xo), dn — f’(Xn),

and if f € C*(a,b),
then for the error of interpolation it holds

f(x) = S(x)| < Ch*



Cubic spline

1.5

—0.5 -



The error for interpolating polynomial

2-




Cubic spline

Cubic spline has interesting extremal property.

Denote
V ={veC%ab)v(x)=yi,i=0,1,...,n V' (x) = do, V' (xs) = dn}
the set of all functions,
which have continuous second derivative on interval (a, b) ,
pass through given points [xj,yi], i =0,1,...,n,
and in endpoints a = X, and X, =Db
have derivatives values d, and d,.

b _ _ . .
Then [ [v”(x)]*dx for cubic spline S(x) achieves minimal value
on the set of all function V, i.e. it hold

/a 15700 dx = min / P dx



Cubic spline

This property has interesting interpretation in mechanics.

It is known that
elastic energy of homogeneous isotropic rod,
which central line is described as
y =v(x), x € (a, b),
has approximately value

E(v) = c [, [v"(x)]dx,

where c IS a constant.

It also holds, that rod,
which is constrained on passing through
fixed interpolating points [X;,y;] in such a way,
that it is only under normal stress to the rod,
take place with minimal energy.

Extremal property therefore claims,
that cubic spline approximates central line of such a rod..



Cubic spline

If we do not know the tangents d, and d,
in endpoints of interval (a, b) ,
then we can use other boundary conditions.



Cubic spline

Construction of cubic spline using the second derivatives.

We can easily check that cubic polynomial
60; — 2hiM;_1 — hiM; P Mi_1 g M; — Mi_,

6 2 6h;
satisfies conditions

Si(xi—1) =Yi—1, S/'(xi—1) = Mi_q,
Si(xi) = yi, 5/ (xi) = M; .

Si(x) =yi-1+s (D

Function S(x) defined on each interval (X;_1, X;) by eq. (1)
therefore satisfies conditions
S(X,') = Yi, SH(X,') = M,‘, = 0, ]., S om o

S(x) is continuous on interval (a, b) and
It has there continuous also the second derivative.



Cubic spline

In order to obtain cubic spline,
function S(x) has to have continuous also first derivative
on interval (a, b).
We require, that at interior points it holds

Si(xi) = S 1(x:) i=1,2,...,n—1.

If we express that condition using

6d; — 2hiMi_1 — hiM; Mi—1 3 Mi— M4

Six)=yi_1+s : 1L >+ o
then we obtain
hM; 1+2(h +h,+1)M +h,+1M,+1—6( i+1— 5) f=1,2,...,n—l.

If we chose boundary conditions as
S"(a) =M,,  S"(b)=M,,

then solving the system we obtain
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Cubic natural spline

Cubic spline with a property
§"(a) = S"(b) =0
Is called cubic natural spline.

It is known that natural spline approximates
bending of simply supported
(homogeneous isotropic) beam
so the beam passes through points [x;, ;]

M, have the meaning of bending moments in [x;, y;] .



Cubic natural spline




Cubic spline

If we do not know the tangents d, and d,
in endpoints of interval (a, b) ,
we can use other boundary conditions.

One of them is called not a knot.

The idea is simple:

we require the spline to be

simple polynomial od the third degree

on the first two intervals,

l.e. for xp < x < X»p,
and on the last two intervals,
i.e. for X,_o2 < X < X,.

In nodes x, and X, _; there is not
connection of two polynomials,
that is the points x; and x,_, are not ,,knots*.



Cubic spline

Polynomials S,;(X) and S,(X) have
common value y,, common first and second derivative
In point X;.

Therefore to be both polynomial the same it is enough to require
to have the continuous third derivative
In point X;.

Similar though holds also in point x,,_;.

This way we obtain boundary conditions

S1'(a) = 8" (x1), Slnb%an) = S 6]



Cubic spline

Summary

Cubic spline S(x) is function that

1. it is continuous together with its first and second
derivatives on interval (a, b),

i.e. S C?a,b),

2. it hold interpolating conditions S(x;) =y;, i =0,1,...,n,
where y; are given functional values,

3. it is polynomial at most degree of three
on each interval (xj_1,X;) ,

4. it holds boundary conditions
a) S'(a)=d,, S'(b)=dp,
b) S$”(a) =S5"(b) =0,
©) S51'(a)=%"(x1),  Spli(xn-1) =S5 (xn-1).



